Penelitian ini difokuskan untuk mengevaluasi kinerja akademik mahasiswa pada tahun ke-2 dan diklasifikasikan dalam kategori mahasiswa yang dapat lulus tepat waktu atau tidak. Kemudian dari klasifikasi tersebut, sistem akan memberikan rekomendasi solusi untuk memandu mahasiswa lulus dalam waktu yang paling tepat dengan nilai optimal berdasarkan histori nilai yang telah ditempuh mahasiswa. Input dari sistem ini adalah data induk mahasiswa dan data akademik mahasiswa. Sampel mahasiswa angkatan 2005-2009 yang sudah dinyatakan lulus akan digunakan sebagai data training dan testing. Sedangkan data mahasiswa angkatan 2010-2011 dan belum lulus akan digunakan sebagai data target. Data input akan diproses menggunakan teknik data mining algoritma Naive Bayes Classifier (NBC) untuk membentuk tabel probabilitas sebagai dasar proses klasifikasi kelulusan mahasiswa. Output dari sistem ini berupa klasifikasi kinerja akademik mahasiswa yang diprediksi kelulusannya dan memberikan rekomendasi untuk proses kelulusan tepat waktu atau lulus dalam waktu yang paling tepat dengan nilai optimal. Hasil pengujian menunjukkan bahwa faktor yang paling berpengaruh dalam penentuan klasifikasi kinerja akademik mahasiswa yaitu Indeks Prestasi Komulatif (IPK), Indeks Prestasi (IP) semester 1, IP semester 4, dan jenis kelamin. Sehingga faktor-faktor tersebut dapat digunakan sebagai bahan evaluasi bagi pihak pengelola perguruan tinggi. Pengujian pada data mahasiswa angkatan 2005-2009, algoritma NBC menghasilkan nilai precision, recall, dan accuracy masing-masing 83%, 50%, dan 70%. Kata Kunci—Kinerja akademik mahasiswa, data mining, dan Naive Bayes Classifier.
[1]
Jian Pei,et al.
Data Mining: Concepts and Techniques, 3rd edition
,
2006
.
[2]
Mahfuza Haque.
Prediction of Student Academic Performance by an Application of K-Means Clustering Algorithm
,
2012
.
[3]
E.N. Ogor.
Student Academic Performance Monitoring and Evaluation Using Data Mining Techniques
,
2007,
Electronics, Robotics and Automotive Mechanics Conference (CERMA 2007).
[4]
Jiawei Han,et al.
Data Mining: Concepts and Techniques
,
2000
.
[5]
Budi Santosa,et al.
DATA MINING : Teknik Pemanfaatan Data untuk Keperluan Bisnis
,
2011
.
[6]
Senol Zafer Erdogan,et al.
A DATA MINING APPLICATION IN A STUDENT DATABASE
,
2005
.
[7]
Dorina Kabakchieva,et al.
Student Performance Prediction by Using Data Mining Classification Algorithms
,
2012
.
[8]
Ernesto Pathros Ibarra Garcia,et al.
Model Prediction of Academic Performance for First Year Students
,
2011,
2011 10th Mexican International Conference on Artificial Intelligence.
[9]
Daniel T. Larose,et al.
Discovering Knowledge in Data: An Introduction to Data Mining
,
2005
.