Kinetic Alfvén waves: Linear theory and a particle‐in‐cell simulation

[1] An Alfven-cyclotron fluctuation of sufficiently short wavelength has a strong proton cyclotron resonance at propagation parallel to the background magnetic field Bo in a homogeneous, collisionless electron-proton plasma. As k∥, the wavevector component parallel to Bo, decreases, the proton cyclotron wave-particle interaction becomes nonresonant, and the electron Landau resonance becomes effective at propagation oblique to Bo. Here linear Vlasov theory is used to determine the dispersion and damping properties of Alfven-cyclotron fluctuations associated with the transition from the proton cyclotron resonance regime to the electron Landau resonance regime. Also, a particle-in-cell plasma simulation is used to examine the electron response to the initial imposition of an Alfven-cyclotron wave in the electron Landau resonance regime. The computation shows heating of the electrons in the direction parallel to Bo and the formation of a beam in the direction of the parallel component of k.

[1]  P. Isenberg The kinetic shell model of coronal heating and acceleration by ion cyclotron waves: 3. The proton halo and dispersive waves , 2004 .

[2]  S. Peter Gary,et al.  Theory of Space Plasma Microinstabilities , 1993 .

[3]  M. Velli,et al.  Alfvén wave propagation and ion cyclotron interactions in the expanding solar wind: One‐dimensional hybrid simulations , 2001 .

[4]  S. Tam,et al.  Kinetic evolution and acceleration of the solar wind , 1999 .

[5]  E. Marsch,et al.  Kinetic Results for Ions in the Solar Corona with Wave-Particle Interactions and Coulomb Collisions , 2002 .

[6]  W. Matthaeus,et al.  Dominant two‐dimensional solar wind turbulence with implications for cosmic ray transport , 1996 .

[7]  E. Marsch,et al.  A semi‐kinetic model of wave‐ion interaction in the solar corona , 2001 .

[8]  S. Gary Collisionless dissipation wavenumber: Linear theory , 1999 .

[9]  C. Vocks A Kinetic Model for Ions in the Solar Corona Including Wave-Particle Interactions and Coulomb Collisions , 2002 .

[10]  S. Gary,et al.  Resonant heating and acceleration of ions in coronal holes driven by cyclotron resonant spectra , 2002 .

[11]  H. K. Wong,et al.  Observational constraints on the dynamics of the interplanetary magnetic field dissipation range , 1998 .

[12]  J. Hollweg,et al.  Kinetic Alfvén wave revisited , 1999 .

[13]  L. Milano,et al.  MHD turbulence and heating of the open field-line solar corona , 2003 .

[14]  W. Matthaeus,et al.  Scaling of spectral anisotropy with magnetic field strength in decaying magnetohydrodynamic turbulence , 1998 .

[15]  J. Hollweg,et al.  Cyclotron resonance in coronal holes: 2. A two‐proton description , 1999 .

[16]  E. Marsch,et al.  Anisotropy regulation and plateau formation through pitch angle diffusion of solar wind protons in resonance with , 2002 .

[17]  A. Hasegawa,et al.  Excitation of kinetic Alfven waves by resonant mode conversion and longitudinal heating of magnetized plasmas , 1989 .

[18]  T. Tajima,et al.  Computer simulation of Alfvén wave heating , 1990 .

[19]  W. Matthaeus,et al.  Evidence for the presence of quasi‐two‐dimensional nearly incompressible fluctuations in the solar wind , 1990 .

[20]  J. Hollweg,et al.  Cyclotron resonances of ions with obliquely propagating waves in coronal holes and the fast solar wind , 2001 .

[21]  S. Gary,et al.  Signatures of wave‐ion interactions in the solar wind: Ulysses observations , 2002 .

[22]  J. Steinberg,et al.  Helium ion acceleration and heating by Alfvén/cyclotron fluctuations in the solar wind , 2001 .

[23]  S. Cranmer Ion cyclotron diffusion of velocity distributions in the extended solar corona , 2001 .

[24]  P. Isenberg,et al.  Generation of the fast solar wind: A review with emphasis on the resonant cyclotron interaction , 2002 .

[25]  S. Cranmer,et al.  Alfvénic Turbulence in the Extended Solar Corona: Kinetic Effects and Proton Heating , 2003, astro-ph/0305134.

[26]  Hui Li,et al.  Whistler anisotropy instability: Wave‐particle scattering rate , 2002 .

[27]  John V. Shebalin,et al.  Anisotropy in MHD turbulence due to a mean magnetic field , 1983, Journal of Plasma Physics.

[28]  Dan Winske,et al.  Role of electron physics in slow mode shocks , 2001 .

[29]  J. Hollweg,et al.  Cyclotron resonance in coronal holes: 3. A five‐beam turbulence‐driven model , 2000 .

[30]  Hui Li,et al.  Solar wind magnetic fluctuation spectra: Dispersion versus damping , 2001 .

[31]  J. Hollweg,et al.  Heating and cooling of protons by turbulence-driven ion cyclotron waves in the fast solar wind , 1999 .

[32]  E. Marsch,et al.  Wave heating and acceleration of solar wind ions by cyclotron resonance , 1982 .

[33]  Charles W. Smith,et al.  Dissipation range dynamics: Kinetic Alfvn waves and the importance of , 1999 .

[34]  J. Hollweg,et al.  Cyclotron resonance in coronal holes: 1. Heating and acceleration of protons, , 1999 .

[35]  P. Isenberg The kinetic shell model of coronal heating and acceleration by ion cyclotron waves: 2. Inward and outward propagating waves , 2001 .

[36]  A. Hasegawa,et al.  MACROSCALE PARTICLE SIMULATION OF KINETIC ALFVEN WAVES , 1987 .

[37]  P. Isenberg,et al.  On the preferential acceleration and heating of solar wind heavy ions , 1982 .

[38]  S. Cranmer Ion Cyclotron Wave Dissipation in the Solar Corona: The Summed Effect of More than 2000 Ion Species , 2000 .

[39]  E. Marsch,et al.  On cyclotron wave heating and acceleration of solar wind ions in the outer corona , 2001 .

[40]  W. Matthaeus,et al.  Scaling of anisotropy in hydromagnetic turbulence , 1998 .

[41]  E. Marsch,et al.  Evidence for pitch angle diffusion of solar wind protons in resonance with cyclotron waves , 2001 .

[42]  S. Saito,et al.  Particle‐in‐cell simulations of Alfvén‐cyclotron wave scattering: Proton velocity distributions , 2003 .