Progress, Opportunities, and Challenges for Applying Atomically Detailed Modeling to Molecular Adsorption and Transport in Metal−Organic Framework Materials

Metal−organic framework (MOF) materials are a class of nanoporous materials that have many potential advantages over traditional nanoporous materials for adsorption and other chemical separation technologies. Because of the large number of different MOFs that exist, efforts to predict the performance of MOFs using molecular modeling can potentially play an important role in selecting materials for specific applications. We review the current state-of-the-art in the molecular modeling and quantum mechanical modeling of MOFs. Quantum mechanical calculations have been used to date to examine structural and electronic properties of MOFs and the calculation of MOF−guest interactions. Molecular modeling calculations using empirical classical potential calculations have been used to study pure and mixed fluid adsorption in MOFs. Similar calculations have recently provided initial information about the diffusive transport of adsorbed fluids in MOFs.

[1]  D. Sholl Understanding macroscopic diffusion of adsorbed molecules in crystalline nanoporous materials via atomistic simulations. , 2006, Accounts of chemical research.

[2]  X. Zeng,et al.  Ab initio study of hydrogen adsorption on benzenoid linkers in metal–organic framework materials , 2007 .

[3]  Mark E. Davis Ordered porous materials for emerging applications , 2002, Nature.

[4]  Mark D. Allendorf,et al.  The Interaction of Water with MOF-5 Simulated by Molecular Dynamics , 2006 .

[5]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[6]  Tanja van Mourik,et al.  A critical note on density functional theory studies on rare-gas dimers , 2002 .

[7]  Krista S. Walton,et al.  Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. , 2007, Journal of the American Chemical Society.

[8]  Wei-Qiao Deng,et al.  Improved designs of metal-organic frameworks for hydrogen storage. , 2007, Angewandte Chemie.

[9]  Kimoon Kim,et al.  Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. , 2004, Angewandte Chemie.

[10]  Qing Min Wang,et al.  Nanopore Structure and Sorption Properties of Cu-BTC Metal-Organic Framework , 2003 .

[11]  O. Seeberg Statistical Mechanics. — A Set of Lectures , 1975 .

[12]  Mark D. Allendorf,et al.  Mechanical properties of cubic zinc carboxylate IRMOF-1 metal-organic framework crystals , 2007 .

[13]  S. Kaskel,et al.  Improved Hydrogen Storage in the Metal‐Organic Framework Cu3(BTC)2 , 2006 .

[14]  C. Serre,et al.  Probing the Adsorption Sites for CO2 in Metal Organic Frameworks Materials MIL-53 (Al, Cr) and MIL-47 (V) by Density Functional Theory , 2008 .

[15]  E. Ganz,et al.  Binding energies of hydrogen molecules to isoreticular metal-organic framework materials. , 2005, The Journal of chemical physics.

[16]  Tatiana Korona,et al.  Anisotropic intermolecular interactions in van der Waals and hydrogen-bonded complexes: What can we get from density functional calculations? , 1999 .

[17]  D. Sholl,et al.  Diffusivities of Ar and Ne in Carbon Nanotubes , 2003 .

[18]  Ulrich Müller,et al.  Hydrogen Adsorption in Metal–Organic Frameworks: Cu‐MOFs and Zn‐MOFs Compared , 2006 .

[19]  A. Dailly,et al.  Saturation of hydrogen sorption in Zn benzenedicarboxylate and Zn naphthalenedicarboxylate. , 2006, The journal of physical chemistry. B.

[20]  Saroj K. Nayak,et al.  Towards extending the applicability of density functional theory to weakly bound systems , 2001 .

[21]  Ju Li,et al.  Theoretical assessment of the elastic constants and hydrogen storage capacity of some metal-organic framework materials. , 2006, The Journal of chemical physics.

[22]  J. Ilja Siepmann,et al.  Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen , 2001 .

[23]  Mohamed Eddaoudi,et al.  On the mechanism of hydrogen storage in a metal-organic framework material. , 2007, Journal of the American Chemical Society.

[24]  Chongli Zhong,et al.  Electrostatic-field-induced enhancement of gas mixture separation in metal-organic frameworks: a computational study. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  K. Lillerud,et al.  Interaction of Hydrogen with MOF-5. , 2005, The journal of physical chemistry. B.

[26]  K. Gubbins,et al.  Pore size heterogeneity and the carbon slit pore: a density functional theory model , 1993 .

[27]  David S. Sholl,et al.  Atomistic Simulations of CO2 and N2 Adsorption in Silica Zeolites: The Impact of Pore Size and Shape† , 2002 .

[28]  S. Goodbody,et al.  Molecular simulation of methane and butane in silicalite , 1991 .

[29]  D. Lévesque,et al.  Hydrogen adsorption in the NaA zeolite: A comparison between numerical simulations and experiments , 2000 .

[30]  Tim Mueller,et al.  A density functional theory study of hydrogen adsorption in MOF-5. , 2005, The journal of physical chemistry. B.

[31]  C. Lamberti,et al.  Local Structure of Framework Cu(II) in HKUST-1 Metallorganic Framework: Spectroscopic Characterization upon Activation and Interaction with Adsorbates , 2006 .

[32]  B. Smit,et al.  Adsorption and separation of linear and branched alkanes on carbon nanotube bundles from configurational-bias Monte Carlo simulation , 2005 .

[33]  J. Johnson,et al.  Microporous metal organic materials: promising candidates as sorbents for hydrogen storage. , 2004, Journal of the American Chemical Society.

[34]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[35]  G. Kearley,et al.  Modelling of hydrogen adsorption in the metal organic framework MOF5 , 2005 .

[36]  U. Mueller,et al.  Metal–organic frameworks—prospective industrial applications , 2006 .

[37]  Omar M Yaghi,et al.  Gas Adsorption Sites in a Large-Pore Metal-Organic Framework , 2005, Science.

[38]  Chongli Zhong,et al.  Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[39]  R. Snurr,et al.  Assessment of Isoreticular Metal−Organic Frameworks for Adsorption Separations: A Molecular Simulation Study of Methane/n-Butane Mixtures , 2004 .

[40]  M. Rosseinsky,et al.  Recent developments in metal–organic framework chemistry: design, discovery, permanent porosity and flexibility ☆ , 2004 .

[41]  Omar M Yaghi,et al.  Hydrogen sorption in functionalized metal-organic frameworks. , 2004, Journal of the American Chemical Society.

[42]  Georg Jansen,et al.  Intermolecular dispersion energies from time-dependent density functional theory , 2003 .

[43]  R. Feynman Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .

[44]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[45]  Qinyu Wang Thermodynamic properties and phase equilibrium of fluid hydrogen from path integral simulations , 1996 .

[46]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[47]  Rochus Schmid,et al.  Ab initio parametrized MM3 force field for the metal‐organic framework MOF‐5 , 2007, J. Comput. Chem..

[48]  David Dubbeldam,et al.  Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[49]  Krista S. Walton,et al.  Molecular simulation of adsorption sites of light gases in the metal-organic framework IRMOF-1 , 2007 .

[50]  N. Chen,et al.  Molecular transport and reaction in zeolites: Design and application of shape selective catalysts , 1994 .

[51]  David S. Sholl,et al.  Screening metal-organic framework materials for membrane-based methane/carbon dioxide separations , 2007 .

[52]  L. Pan,et al.  Adsorption and diffusion of hydrogen in a new metal-organic framework material: [Zn(bdc)(ted)0.5] , 2008 .

[53]  S. Kitagawa,et al.  Flexible microporous coordination polymers , 2005 .

[54]  Bartolomeo Civalleri,et al.  Ab-initio prediction of materials properties with CRYSTAL: MOF-5 as a case study , 2006 .

[55]  Saeed Amirjalayer,et al.  Molecular dynamics simulation of benzene diffusion in MOF-5: importance of lattice dynamics. , 2007, Angewandte Chemie.

[56]  Y. Kitagawa,et al.  Theoretical studies of spin arrangement of adsorbed organic radicals in metal-organic nanoporous cavity , 2001 .

[57]  E. Ganz,et al.  Computational study of hydrogen binding by metal-organic framework-5. , 2004, The Journal of chemical physics.

[58]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[59]  Omar M Yaghi,et al.  Exceptional H2 saturation uptake in microporous metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[60]  B. Smit,et al.  Molecular Simulations of Adsorption Isotherms for Linear and Branched Alkanes and Their Mixtures in Silicalite , 1999 .

[61]  J. Ilja Siepmann,et al.  Predicting multicomponent phase equilibria and free energies of transfer for alkanes by molecular simulation , 1997 .

[62]  Randall Q. Snurr,et al.  Design Requirements for Metal-Organic Frameworks as Hydrogen Storage Materials , 2007 .

[63]  O. Yaghi,et al.  Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels , 1995 .

[64]  Xiaoning Yang,et al.  Molecular simulation study of adsorption and diffusion on silicalite for a benzene/CO2 mixture. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[65]  Structure of functionalized porous metal-organic frameworks by molecular orbital methods , 2005 .

[66]  D. Sholl,et al.  Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations. , 2005, The journal of physical chemistry. B.

[67]  Chongli Zhong,et al.  Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks. , 2005, The journal of physical chemistry. B.

[68]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[69]  G. Garberoglio Computer simulation of the adsorption of light gases in covalent organic frameworks. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[70]  Chongli Zhong,et al.  Understanding hydrogen adsorption in metal-organic frameworks with open metal sites: a computational study. , 2006, The journal of physical chemistry. B.

[71]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[72]  S. James,et al.  Solvent-free synthesis of a microporous metal–organic framework , 2006 .

[73]  Sanyue Wang,et al.  Comparative Molecular Simulation Study of Methane Adsorption in Metal−Organic Frameworks , 2007 .

[74]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[75]  J. Johnson,et al.  Experimental and Theoretical Studies of Gas Adsorption in Cu3(BTC)2: An Effective Activation Procedure , 2007 .

[76]  J. Kärger,et al.  Combined quasi‐elastic neutron scattering and NMR study of hydrogen diffusion in zeolites , 1999 .

[77]  S. Nguyen,et al.  Prospects for nanoporous metal-organic materials in advanced separations processes , 2004 .

[78]  Lev Sarkisov,et al.  Design of new materials for methane storage. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[79]  A. Fletcher,et al.  Flexibility in metal-organic framework materials: impact on sorption properties , 2005 .

[80]  William A. Wakeham,et al.  Intermolecular Forces: Their Origin and Determination , 1983 .

[81]  J. E. Coon,et al.  Isothermalisobaric molecular dynamics simulation of diatomic liquids and their mixtures , 1987 .

[82]  D. Sholl,et al.  Rapid transport of gases in carbon nanotubes. , 2002, Physical review letters.

[83]  B. Noll,et al.  Synthesis, structural characterization, gas sorption and guest-exchange studies of the lightweight, porous metal-organic framework alpha-[Mg3(O2CH)6]. , 2006, Inorganic chemistry.

[84]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[85]  Kimihiko Hirao,et al.  A density functional study of van der Waals interactions , 2002 .

[86]  B. Smit,et al.  Molecular simulation of adsorption of short linear alkanes and their mixtures in silicalite , 1998 .

[87]  Lattice dynamics of metal-organic frameworks: Neutron inelastic scattering and first-principles calculations , 2006, cond-mat/0609222.

[88]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[89]  F. Negri,et al.  Tuning the physisorption of molecular hydrogen: binding to aromatic, hetero-aromatic and metal-organic framework materials , 2007 .

[90]  C. Serre,et al.  Adsorption of CO2 in metal organic frameworks of different metal centres: Grand Canonical Monte Carlo simulations compared to experiments , 2007 .

[91]  J. I. Siepmann,et al.  Direct calculation of Henry’s law constants from Gibbs ensemble Monte Carlo simulations: nitrogen, oxygen, carbon dioxide and methane in ethanol , 2006 .

[92]  M. Nagaoka,et al.  Theoretical characterization of coordination space: Adsorption state and behavior of small molecules in nanochanneled metal-organic frameworks via electronic state theory, molecular mechanical and Monte Carlo simulation , 2007 .

[93]  Mohamed Eddaoudi,et al.  Highly Porous and Stable Metal−Organic Frameworks: Structure Design and Sorption Properties , 2000 .

[94]  Rajamani Krishna,et al.  Mass Transfer in Multicomponent Mixtures , 2006 .

[95]  J. Johnson,et al.  Phase equilibrium of quantum fluids from simulation: Hydrogen and neon , 1997 .

[96]  G. Férey,et al.  Charge distribution in metal organic framework materials: transferability to a preliminary molecular simulation study of the CO(2) adsorption in the MIL-53 (Al) system. , 2007, Physical chemistry chemical physics : PCCP.

[97]  A. Fletcher,et al.  High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework. , 2007, Journal of the American Chemical Society.

[98]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[99]  D. Sholl,et al.  Testing the accuracy of correlations for multicomponent mass transport of adsorbed gases in metal-organic frameworks: diffusion of H2/CH4 mixtures in CuBTC. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[100]  Li Zhang,et al.  Design for hydrogen storage materials via observation of adsorption sites by computer tomography. , 2007, The journal of physical chemistry. B.

[101]  C. Serre,et al.  Synthesis of MIL-102, a chromium carboxylate metal-organic framework, with gas sorption analysis. , 2006, Journal of the American Chemical Society.

[102]  M. Coppens,et al.  Modeling of Diffusion in Zeolites , 2000 .

[103]  R. Snurr,et al.  Nonequilibrium molecular dynamics simulations of diffusion of binary mixtures containing short n-alkanes in faujasite , 2004 .

[104]  Randall Q Snurr,et al.  Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[105]  Kwong H. Yung,et al.  Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model , 1995 .

[106]  Alan L. Myers,et al.  Thermodynamics of mixed‐gas adsorption , 1965 .

[107]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[108]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[109]  Chongli Zhong,et al.  Molecular simulation of separation of CO2 from flue gases in CU‐BTC metal‐organic framework , 2007 .

[110]  V. Buch,et al.  Path integral simulations of mixed para‐D2 and ortho‐D2 clusters: The orientational effects , 1994 .

[111]  A. Skoulidas Molecular dynamics simulations of gas diffusion in metal-organic frameworks: argon in CuBTC. , 2004, Journal of the American Chemical Society.

[112]  S. Kaskel,et al.  Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2 , 2004 .

[113]  Jaheon Kim,et al.  Understanding the mechanism of hydrogen adsorption into metal organic frameworks , 2007 .

[114]  Kurt Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics , 2000 .

[115]  D. Olson,et al.  Microporous Metal–Organic Frameworks with High Gas Sorption and Separation Capacity , 2007 .

[116]  Daojun Zhang,et al.  Solvothermal synthesis a novel hemidirected 2-D (3,3)-net metal-organic framework [Pb(HIDC)]n based on the linkages of left- and right-hand helical chains , 2008 .

[117]  Young Ho Jhon,et al.  Simulations of Methane Adsorption and Diffusion within Alkoxy-Functionalized IRMOFs Exhibiting Severely Disordered Crystal Structures , 2007 .

[118]  J. Johnson,et al.  Adsorption of gases in metal organic materials: comparison of simulations and experiments. , 2005, The journal of physical chemistry. B.

[119]  D. Sholl,et al.  Efficient simulation of binary adsorption isotherms using transition matrix Monte Carlo. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[120]  T. Yildirim,et al.  Direct observation of hydrogen adsorption sites and nanocage formation in metal-organic frameworks. , 2005, Physical review letters.

[121]  Qing Min Wang,et al.  Metallo-organic molecular sieve for gas separation and purification , 2002 .

[122]  J. Jagiello,et al.  Gas sorption properties of microporous metal organic frameworks , 2005 .

[123]  K. Lillerud,et al.  Design, synthesis and characterization of a Pt-Gd metal-organic framework containing potentially catalytically active sites. , 2008, Dalton transactions.

[124]  Chongli Zhong,et al.  Adsorption and separation of binary mixtures in a metal-organic framework Cu-BTC: A computational study , 2008 .

[125]  S. Sandler,et al.  Monte Carlo simulation for the adsorption and separation of linear and branched alkanes in IRMOF-1. , 2006, Langmuir.

[126]  Jaheon Kim,et al.  Grand canonical Monte Carlo simulation study on the catenation effect on hydrogen adsorption onto the interpenetrating metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[127]  P. Llewellyn,et al.  Adsorption mechanism of carbon dioxide in faujasites: grand canonical monte carlo simulations and microcalorimetry measurements. , 2005, The journal of physical chemistry. B.

[128]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[129]  Kimoon Kim,et al.  Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. , 2004, Journal of the American Chemical Society.

[130]  D. Olson,et al.  Separation of hydrocarbons with a microporous metal-organic framework. , 2006, Angewandte Chemie.

[131]  Dmitrii E. Makarov,et al.  van der Waals Energies in Density Functional Theory , 1998 .

[132]  S. Qiu,et al.  Synthesis, structure and luminescent property of a new 3D porous metal–organic framework with rutile topology , 2007 .