Dual roles of quantum discord in a nondemolition probing task

We present a nondemolition quantum information processing task of probing the information of a class of quantum state. In this task, the information is extracted by some unitary evolution with the introduced probing qubit assisted, but the probed quantum state (density matrix) is undisturbed at any time and independent of the choice of the initial probing state. We give a sufficient and necessary condition on the Hamiltonian that can lead to the successful realization of such a task. We prove that, for any feasible scheme, the probed plus probing system will always stay at a disentangled state with one side's quantum discord absent and the other side's inevitably produced in the probing process. An explicit example is given for the demonstration, which shows that the ratio of quantum discord to the total correlation will have to reduce to zero for the maximal accessible information. In this sense, we say that quantum discord plays a dual role in this case. DOI: 10.1103/PhysRevA.87.022113

[1]  Meyer Sophisticated quantum search without entanglement , 2000, Physical review letters.

[2]  F. F. Fanchini,et al.  Non-Markovian dynamics of quantum discord , 2009, 0911.1096.

[3]  S. Luo Quantum discord for two-qubit systems , 2008 .

[4]  F. F. Fanchini,et al.  Conservation law for distributed entanglement of formation and quantum discord , 2010, 1006.2460.

[5]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[6]  J. Piilo,et al.  FROZEN DISCORD IN NON-MARKOVIAN DEPHASING CHANNELS , 2010, 1006.1805.

[7]  Haiqing Zhao Direct Measure of Quantum Correlation , 2011 .

[8]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[9]  W. H. Zurek,et al.  Einselection and decoherence from an information theory perspective , 2000, Annalen der Physik.

[10]  G. Guo,et al.  Experimental investigation of classical and quantum correlations under decoherence. , 2009, Nature communications.

[11]  M. Horodecki,et al.  Local versus nonlocal information in quantum-information theory: Formalism and phenomena , 2004, quant-ph/0410090.

[12]  Peng Zhang,et al.  Fast entanglement of two charge-phase qubits through nonadiabatic coupling to a large Josephson junction , 2003, cond-mat/0307043.

[13]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[14]  Animesh Datta,et al.  QUANTUM DISCORD AS A RESOURCE IN QUANTUM COMMUNICATION , 2012, 1204.6042.

[15]  T. Ralph,et al.  Observing the operational significance of discord consumption , 2012, Nature Physics.

[16]  Animesh Datta,et al.  Role of entanglement and correlations in mixed-state quantum computation , 2007 .

[17]  F. F. Fanchini,et al.  Robustness of quantum discord to sudden death , 2009, 0905.3376.

[18]  A. Rau,et al.  Quantum discord for two-qubit X states , 2010, 1002.3429.

[19]  A. Datta,et al.  Entanglement and the power of one qubit , 2005, quant-ph/0505213.

[20]  L. Aolita,et al.  Operational interpretations of quantum discord , 2010, 1008.3205.

[21]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[22]  Yannick Ole Lipp,et al.  Quantum discord as resource for remote state preparation , 2012, Nature Physics.

[23]  Luis Roa,et al.  Dissonance is required for assisted optimal state discrimination. , 2011, Physical review letters.

[24]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  Tal Mor,et al.  Quantum advantage without entanglement , 2005, SPIE Optics + Photonics.

[27]  Animesh Datta,et al.  Interpreting quantum discord through quantum state merging , 2010, ArXiv.

[28]  M Christandl,et al.  Broadcast copies reveal the quantumness of correlations. , 2009, Physical review letters.

[29]  V. Vedral,et al.  Classical and quantum correlations under decoherence , 2009, 0905.3396.

[30]  P. Horodecki,et al.  No-local-broadcasting theorem for multipartite quantum correlations. , 2007, Physical review letters.

[31]  A. Fisher,et al.  Quantum communication in spin systems with long-range interactions (7 pages) , 2006, quant-ph/0603148.

[32]  Gerardo Adesso,et al.  All nonclassical correlations can be activated into distillable entanglement. , 2011, Physical review letters.

[33]  V. Vedral Classical correlations and entanglement in quantum measurements. , 2002, Physical review letters.

[34]  T. Paterek,et al.  Unified view of quantum and classical correlations. , 2009, Physical review letters.

[35]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[36]  J. Piilo,et al.  Sudden transition between classical and quantum decoherence. , 2010, Physical review letters.

[37]  F. F. Fanchini,et al.  Entanglement irreversibility from quantum discord and quantum deficit. , 2010, Physical review letters.

[38]  B. Lanyon,et al.  Experimental quantum computing without entanglement. , 2008, Physical review letters.