Stabilizer codes can be realized as graph codes

We establish the connection between a recent new construction technique for quantum error correcting codes, based on graphs, and the so-called stabilizer codes: Each stabilizer code can be realized as a graph code and vice versa.

[1]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[2]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[3]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[4]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[5]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[6]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[7]  Andreas Klappenecker,et al.  Graphs, quadratic forms, and quantum codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[8]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[9]  Dirk Schlingemann Logical network implementation for cluster states and graph codes , 2003, Quantum Inf. Comput..

[10]  T. Beth,et al.  Cyclic quantum error–correcting codes and quantum shift registers , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  Dirk Schlingemann,et al.  Quantum error-correcting codes associated with graphs , 2000, ArXiv.

[12]  Markus Grassl,et al.  Quantum Reed-Solomon Codes , 1999, AAECC.