Recent Progress in High Refractive Index Polymers

High refractive index polymers have been widely developed in recent years for their potential applications in advanced optoelectronic fabrications, such as high performance components for advanced display devices, encapsulants for light-emitting diode devices, microlens components for complementary metal oxide semiconductor image sensors, plastic lenses for eyeglasses, and camera, pick-up, and projector lenses. This Perspective describes the recent progress in high refractive index (n) polymers over the past decade and focuses on the design concept to increase n values and Abbe’s number (ν) of polymers. After a brief introduction of the basic methodology for developing high-n polymers and important parameters, such as Abbe’s number and birefringence, applications of high-n polymers, such as antirefractive coatings, microlenses for CMOS image sensors, encapsulants for LEDs, and high-n thermoplastic lenses, are highlighted.

[1]  A. Shockravi,et al.  Synthesis and structure–property relationships of novel thiazole‐containing poly(amide imide)s with high refractive indices and low birefringences , 2015 .

[2]  G. Khanarian,et al.  High refractive index thermally stable phenoxyphenyl and phenylthiophenyl silicones for light-emitting diode applications , 2014 .

[3]  Tomoya Higashihara,et al.  Synthesis and Characterization of High Refractive Index and High Abbe’s Number Poly(thioether sulfone)s based on Tricyclo[5.2.1.02,6]decane Moiety , 2012 .

[4]  A. Stiegman,et al.  High Refractive Index Polymers Based on Thiol–Ene Cross-Linking Using Polarizable Inorganic/Organic Monomers , 2012 .

[5]  Tomoya Higashihara,et al.  Synthesis of Highly Refractive Poly(phenylene thioether) Derived from 2,4-Dichloro-6-alkylthio-1,3,5-triazines and Aromatic Dithiols , 2011 .

[6]  Tomoya Higashihara,et al.  Synthesis and characterization of thianthrene-based poly(phenylene sulfide)s with high refractive index over 1.8 , 2011 .

[7]  Bo-Tau Liu,et al.  High-refractive-index polymer/inorganic hybrid films containing high TiO2 contents , 2011 .

[8]  Jingang Liu,et al.  Synthesis and characterization of organo-soluble thioether-bridged polyphenylquinoxalines with ultra-high refractive indices and low birefringences , 2010 .

[9]  Byeong-Soo Bae,et al.  Thermally Stable Transparent Sol−Gel Based Siloxane Hybrid Material with High Refractive Index for Light Emitting Diode (LED) Encapsulation , 2010 .

[10]  Tomoya Higashihara,et al.  Highly Refractive Poly(phenylene thioether) Containing Triazine Unit , 2010 .

[11]  Wen‐Chang Chen,et al.  Flexible Nanocrystalline-Titania/Polyimide Hybrids with High Refractive Index and Excellent Thermal Dimensional Stability , 2010 .

[12]  Tomoya Higashihara,et al.  Optically Transparent Sulfur-containing Semi-alicyclic Polyimide with High Refractive Index , 2010 .

[13]  Shinji Ando,et al.  Synthesis and Characterization of Highly Refractive Polyimides Derived from Thiophene-Containing Aromatic Diamines and Aromatic Dianhydrides , 2010 .

[14]  Jingang Liu,et al.  Multi-Methyl-Substituted Polyphenylquinoxalines with High Solubility and High Glass Transition Temperatures: Synthesis and Characterization , 2010 .

[15]  Synthesis of amorphous copoly(thioether sulfone)s with high refractive indices and high Abbe numbers , 2010 .

[16]  Hung-Ju Yen,et al.  Highly flexible and optical transparent 6F-PI/TiO2 optical hybrid films with tunable refractive index and excellent thermal stability , 2010 .

[17]  Jingang Liu,et al.  High refractive index polymers: fundamental research and practical applications , 2009 .

[18]  Tomoya Higashihara,et al.  Synthesis of High Refractive Index Poly(thioether sulfone)s with High Abbe's Number Derived from 2,5-Bis(sulfanylmethyl)-1,4-dithiane , 2009 .

[19]  Tomoya Higashihara,et al.  Synthesis of high‐refractive index polyimide containing selenophene unit , 2009 .

[20]  M. Robb,et al.  Poly(arylene sulfide)s by Nucleophilic Aromatic Substitution Polymerization of 2,7-Difluorothianthrene , 2009 .

[21]  H. Allcock,et al.  Cyclotriphosphazenes with sulfur-containing side groups: refractive index and optical dispersion. , 2009, Dalton transactions.

[22]  H. Chan,et al.  The stability of high refractive index polymer materials for high-density planar optical circuits , 2009 .

[23]  Shinji Ando,et al.  Optically Transparent Sulfur-Containing Polyimide−TiO2 Nanocomposite Films with High Refractive Index and Negative Pattern Formation from Poly(amic acid)−TiO2 Nanocomposite Film , 2009 .

[24]  Shinji Ando,et al.  Synthesis of High Refractive Index Polyimides Derived from 1,6-Bis(p-aminophenylsulfanyl)-3,4,8,9-tetrahydro-2,5,7,10-tetrathiaanthracene and Aromatic Dianhydrides , 2008 .

[25]  M. Ueda,et al.  Poly(thioether sulfone) with High Refractive Index and High Abbe's Number , 2008 .

[26]  M. Hartmann,et al.  Novel Organic/Inorganic Hybrid Materials by Covalent Anchoring of Phenothiazines on MCM-41 , 2008 .

[27]  M. Ueda,et al.  Sulfur-Containing Poly(meth)acrylates with High Refractive Indices and High Abbe’s Numbers , 2008 .

[28]  Yongzhi He,et al.  One-Component, Low-Temperature, and Fast Cure Epoxy Encapsulant With High Refractive Index for LED Applications , 2008, IEEE Transactions on Advanced Packaging.

[29]  E. Schubert,et al.  High-refractive-index TiO2-nanoparticle-loaded encapsulants for light-emitting diodes , 2008 .

[30]  Wen-Chang Chen,et al.  High refractive index polyimide–nanocrystalline-titania hybrid optical materials , 2008 .

[31]  A. Morin,et al.  Advanced Mesostructured Hybrid Silica−Nafion Membranes for High-Performance PEM Fuel Cell , 2008 .

[32]  Shinji Ando,et al.  Synthesis and properties of highly refractive polyimides derived from fluorene‐bridged sulfur‐containing dianhydrides and diamines , 2008 .

[33]  Jingang Liu,et al.  Highly Refractive Polyimides Derived from 2,8-Bis(p-aminophenylenesulfanyl)dibenzothiophene and Aromatic Dianhydrides , 2008 .

[34]  Jingang Liu,et al.  Synthesis and characterization of highly refractive polyimides from 4,4′‐thiobis[(p‐phenylenesulfanyl)aniline] and various aromatic tetracarboxylic dianhydrides , 2007 .

[35]  K. Nozaki,et al.  Synthesis of sulfur-rich polymers: copolymerization of episulfide with carbon disulfide by using [PPN]Cl/(salph)Cr(III)Cl system. , 2007, Journal of the American Chemical Society.

[36]  H. Althues,et al.  Functional inorganic nanofillers for transparent polymers. , 2007, Chemical Society reviews.

[37]  T. Takata,et al.  Synthesis of fluorene‐based high performance polymers. I. Poly(arylene thioether)s with excellent solubility and high refractive index , 2007 .

[38]  B. Tang,et al.  Metallized hyperbranched polydiyne: a photonic material with a large refractive index tunability and a spin-coatable catalyst for facile fabrication of carbon nanotubes. , 2007, Chemical communications.

[39]  Shinji Ando,et al.  Synthesis and Characterization of High Refractive Index Polyimides Derived from 4,4′-( p -Phenylenedisulfanyl)dianiline and Various Aromatic Tetracarboxylic Dianhydrides , 2007 .

[40]  Yu-Ming Lin,et al.  Transparent high refractive index nanocomposite thin films , 2007 .

[41]  Jingang Liu,et al.  High refractive index polyimides derived from 2,7-Bis(4-aminophenylenesulfanyl) thianthrene and aromatic dianhydrides , 2007 .

[42]  D. Guillon,et al.  Mesomorphism of Hybrid Siloxane-Triphenylene Star-Shaped Oligomers , 2007 .

[43]  Richard W. Siegel,et al.  High refractive index nanoparticle-loaded encapsulants for light-emitting diodes , 2007, SPIE OPTO.

[44]  Yasuo Tomita,et al.  Highly transparent ZrO(2) nanoparticle-dispersed acrylate photopolymers for volume holographic recording. , 2006, Optics express.

[45]  E. Goosey Brominated flame retardants: their potential impacts and routes into the environment , 2006 .

[46]  Toshitaka Nakamura,et al.  Enhanced Coupling of Light from Organic Electroluminescent Device Using Diffusive Particle Dispersed High Refractive Index Resin Substrate , 2006 .

[47]  Young‐gu Ju,et al.  Numerical Analysis of High-Index Nano-Composite Encapsulant for Light-Emitting Diodes , 2005, physics/0511010.

[48]  Mitsuhito Suwa,et al.  High Refractive Index Positive Tone Photo-sensitive Coating , 2006 .

[49]  R. Laine Nanobuilding blocks based on the [OSiO1.5]x (x= 6, 8, 10) octasilsesquioxanes , 2005 .

[50]  Thad Druffel,et al.  Anti-reflective optical coatings incorporating nanoparticles , 2005, Nanotechnology.

[51]  B. H. Liu,et al.  Controlling the crystallinity and nonlinear optical properties of transparent TiO2–PMMA nanohybrids , 2004 .

[52]  K. Kitamura,et al.  Fabrication Method of Double-Microlens Array Using Self-Alignment Technology , 2004 .

[53]  T. Takata,et al.  Properties of a few aromatic poly(thioether ketones) as sulfur‐containing high‐performance polymers , 2004 .

[54]  E. Kumacheva,et al.  Polyferrocenes: metallopolymers with tunable and high refractive indices. , 2004, Chemical communications.

[55]  K. Horie,et al.  Improvement of Chromatic Aberration of the Plastic Rod‐Lens Array, 2 , 2004 .

[56]  Bai Yang,et al.  Studies on syntheses and properties of episulfide‐type optical resins with high refractive index , 2003 .

[57]  Bai Yang,et al.  High refractive index thin films of ZnS/polythiourethane nanocomposites , 2003 .

[58]  M. Sankarapandian,et al.  Synthesis of high refractive-index melt-stable aromatic polyphosphonates , 2001 .

[59]  Takahashi Toru,et al.  Synthesis and optical properties of polyimides , 2000 .

[60]  Masahiro Yoshida,et al.  Optical material of high refractive index resin composed of sulfur‐containing aliphatic and alicyclic methacrylates , 2000 .

[61]  Bai Yang,et al.  Study on syntheses and properties of 2,2′‐mercaptoethylsulfide dimethacrylate transparent homo‐ and copolymer resins having high refractive index , 2000 .

[62]  J. Hay,et al.  A versatile route to organically-modified silicas and porous silicas via the non-hydrolytic sol–gel process , 2000 .

[63]  H. Seino,et al.  Synthesis of Fully Aliphatic Polyimides , 1999 .

[64]  Toshihiko Matsumoto Nonaromatic polyimides derived from cycloaliphatic monomers , 1999 .

[65]  S. Kohmoto,et al.  Preparation, characterization, and optical properties of disulfide-comprising oligo[2,5-bis(thiomethyl)-1,4-dithiane] and its poly[S-alkylcarbamate] , 1999 .

[66]  S. Kohmoto,et al.  Synthesis, characterization, and optical properties of polymers comprising 1,4‐dithiane‐2,5‐bis(thiomethyl) group , 1998 .

[67]  F. Papadimitrakopoulos,et al.  Mechanically Attrited Silicon for High Refractive Index Nanocomposites , 1997 .

[68]  H. Allcock,et al.  Polyphosphazenes with High Refractive Indices: Optical Dispersion and Molar Refractivity , 1997 .

[69]  C. Ober,et al.  High Refractive Index Polymers for Optical Applications , 1997 .

[70]  T. Kohara Development of new cyclic olefin polymers for optical uses , 1996 .

[71]  H. Allcock,et al.  Polyphosphazenes with High Refractive Indices: Synthesis, Characterization, and Optical Properties , 1995 .

[72]  Samson A. Jenekhe,et al.  Group contribution to molar refraction and refractive index of conjugated polymers , 1995 .

[73]  S. Jenekhe,et al.  Effects of Structure on Refractive Index of Conjugated Polyimines , 1994 .

[74]  L. Mathias,et al.  Thermally Stable Cyclopolymer From the Ether Dimer of Adamantyl Alpha-Hydroxymethylacrylate , 1993 .

[75]  K. Horie,et al.  Polyimides with Alicyclic Diamines. I. Syntheses and Thermal Properties , 1993 .

[76]  R. Gaudiana,et al.  Design and Synthesis of High Refractive Index Polymers. II , 1992 .

[77]  U. Suter,et al.  Preparation of polymer nanocomposites with “ultrahigh” refractive index , 1991 .

[78]  H. Sasabe,et al.  Optical nonlinearity of conjugated polymers , 1989 .

[79]  M L Rubin,et al.  Spectacles: past, present, and future. , 1986, Survey of ophthalmology.

[80]  R. Gaudiana,et al.  Highly amorphous, birefringent, para-linked aromatic polyamides , 1985 .

[81]  H. Dislich Kunststoffe in der Optik , 1979 .

[82]  W. W. Wright,et al.  A study of some properties of aromatic imides , 1971 .

[83]  H. A. Lorentz Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte , 1880 .

[84]  L. Lorenz Ueber die Refractionsconstante , 1880 .