Hybrid algorithms for multiple change-point detection in biological sequences.

Array comparative genomic hybridization (aCGH) is one of the techniques that can be used to detect copy number variations in DNA sequences in high resolution. It has been identified that abrupt changes in the human genome play a vital role in the progression and development of many complex diseases. In this study we propose two distinct hybrid algorithms that combine efficient sequential change-point detection procedures (the Shiryaev-Roberts procedure and the cumulative sum control chart (CUSUM) procedure) with the Cross-Entropy method, which is an evolutionary stochastic optimization technique to estimate both the number of change-points and their corresponding locations in aCGH data. The proposed hybrid algorithms are applied to both artificially generated data and real aCGH experimental data to illustrate their usefulness. Our results show that the proposed methodologies are effective in detecting multiple change-points in biological sequences of continuous measurements.

[1]  Dirk P. Kroese,et al.  Convergence properties of the cross-entropy method for discrete optimization , 2007, Oper. Res. Lett..

[2]  R. Tibshirani,et al.  Spatial smoothing and hot spot detection for CGH data using the fused lasso. , 2008, Biostatistics.

[3]  P. Wilcox,et al.  AIP Conference Proceedings , 2012 .

[4]  J. Sebat,et al.  Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. , 2003, Genome research.

[5]  Chenlei Leng,et al.  Shrinkage tuning parameter selection with a diverging number of parameters , 2008 .

[6]  M. Pollak,et al.  Exact optimality of the Shiryaev-Roberts procedure for detecting changes in distributions , 2008, 2008 International Symposium on Information Theory and Its Applications.

[7]  Grigory Sokolov,et al.  Quickest Change-Point Detection: A Bird's Eye View , 2013, 1310.3285.

[8]  George Y. Sofronov,et al.  A modified cross entropy method for detecting multiple change points in DNA Count Data , 2012, 2012 IEEE Congress on Evolutionary Computation.

[9]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[10]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[11]  Vito M. R. Muggeo,et al.  Efficient change point detection for genomic sequences of continuous measurements , 2011, Bioinform..

[12]  Jill P. Mesirov,et al.  GSEA-P: a desktop application for Gene Set Enrichment Analysis , 2007, Bioinform..

[13]  N. Carter Methods and strategies for analyzing copy number variation using DNA microarrays , 2007, Nature Genetics.

[14]  V. Johnson Revised standards for statistical evidence , 2013, Proceedings of the National Academy of Sciences.

[15]  Chao Xie,et al.  CNV-seq, a new method to detect copy number variation using high-throughput sequencing , 2009, BMC Bioinformatics.

[16]  M. Wigler,et al.  Circular binary segmentation for the analysis of array-based DNA copy number data. , 2004, Biostatistics.

[17]  G. Sofronov,et al.  Sequential change-point detection via the Cross-Entropy method , 2012, 11th Symposium on Neural Network Applications in Electrical Engineering.

[18]  R. Simes,et al.  An improved Bonferroni procedure for multiple tests of significance , 1986 .

[19]  Frederick Mosteller,et al.  Understanding robust and exploratory data analysis , 1983 .

[20]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[21]  Dirk P. Kroese,et al.  The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning , 2004 .

[22]  M. Srivastava,et al.  On Tests for Detecting Change in Mean , 1975 .

[23]  Moshe Pollak,et al.  ON OPTIMALITY PROPERTIES OF THE SHIRYAEV-ROBERTS PROCEDURE , 2007, 0710.5935.

[24]  L. Feuk,et al.  Structural variation in the human genome , 2006, Nature Reviews Genetics.

[25]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Optimal stopping rules , 1977 .

[26]  S. W. Roberts A Comparison of Some Control Chart Procedures , 1966 .

[27]  Chandra Erdman,et al.  A fast Bayesian change point analysis for the segmentation of microarray data , 2008, Bioinform..

[28]  P Bernaola-Galván,et al.  Isochore chromosome maps of eukaryotic genomes. , 2001, Gene.

[29]  Ajay N. Jain,et al.  Assembly of microarrays for genome-wide measurement of DNA copy number , 2001, Nature Genetics.

[30]  A. Shiryaev On Optimum Methods in Quickest Detection Problems , 1963 .

[31]  Ash A. Alizadeh,et al.  Genome-wide analysis of DNA copy-number changes using cDNA microarrays , 1999, Nature Genetics.

[32]  Christian A. Rees,et al.  Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Georgy Sofronov Change-point modelling in biological sequences via the bayesian adaptive independent sampler , 2011 .

[34]  Kenny Q. Ye,et al.  Large-Scale Copy Number Polymorphism in the Human Genome , 2004, Science.

[35]  Georgy Sofronov,et al.  A hybrid genetic algorithm for change-point detection in binary biomolecular sequences , 2013 .

[36]  D. Pinkel,et al.  BAC microarray-based comparative genomic hybridization. , 2004, Methods in molecular biology.

[37]  Joe W. Gray,et al.  Genome scanning with array CGH delineates regional alterations in mouse islet carcinomas , 2001, Nature Genetics.

[38]  Chandra Erdman,et al.  bcp: An R Package for Performing a Bayesian Analysis of Change Point Problems , 2007 .

[39]  D. Pinkel,et al.  Comparative Genomic Hybridization for Molecular Cytogenetic Analysis of Solid Tumors , 2022 .

[40]  H. Müller,et al.  Statistical methods for DNA sequence segmentation , 1998 .

[41]  Gareth E. Evans,et al.  Identifying Change-Points in Biological Sequences via Sequential Importance Sampling , 2009 .

[42]  Jonathan M. Keith,et al.  Segmenting Eukaryotic Genomes with the Generalized Gibbs Sampler , 2006, J. Comput. Biol..

[43]  Georgy Sofronov,et al.  Change-point detection in biological sequences via genetic algorithm , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[44]  Peter J. Park,et al.  Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data , 2005, Bioinform..

[45]  Gareth E. Evans,et al.  Estimating change-points in biological sequences via the cross-entropy method , 2011, Ann. Oper. Res..

[46]  Simon Tavaré,et al.  CNAseg - a novel framework for identification of copy number changes in cancer from second-generation sequencing data , 2010, Bioinform..

[47]  J. Hartigan,et al.  A Bayesian Analysis for Change Point Problems , 1993 .

[48]  P. Fearnhead,et al.  Optimal detection of changepoints with a linear computational cost , 2011, 1101.1438.

[49]  Georgy Sofronov,et al.  GAMLSS and extended Cross-Entropy method to detect multiple change-points in DNA read count data , 2013 .

[50]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.