Generalized Convolution Behaviors and Topological Algebra
暂无分享,去创建一个
[1] J. Loiseau. Algebraic tools for the control and stabilization of time-delay systems , 2000 .
[2] Luc C. G. J. M. Habets,et al. System Equivalence for AR-Systems over Rings—with an Application to Delay-Differential Systems , 1997, 1997 European Control Conference (ECC).
[3] B. A. Taylor,et al. Mean-periodic functions , 1980 .
[4] O. Forster. Primärzerlegung in Steinschen Algebren , 1964 .
[5] S. Zampieri,et al. The algebraic structure of DD systems : a behavioral perspective , 2000 .
[6] Hugues Mounier,et al. Algebraic interpretations of the spectral controllability of a linear delay system , 1998 .
[7] L. Schwartz. Théorie des distributions , 1966 .
[8] M. Reid,et al. Commutative ring theory: Regular rings , 1987 .
[9] Jean-Pierre Kahane,et al. Sur quelques problèmes d'unicité et de prolongement relatifs aux fonctions approchables par des sommes d'exponentielles , 1954 .
[10] N. Bourbaki. Topological Vector Spaces , 1987 .
[11] Sandro Zampieri,et al. Some results on systems described by convolutional equations , 2001, IEEE Trans. Autom. Control..
[12] Richard Bellman,et al. Differential-Difference Equations , 1967 .
[13] L. Schwartz. Theorie Generale des Fonctions Moyenne-Periodiques , 1947 .
[14] Jan C. Willems,et al. Behavioral controllability and coprimeness for a class of infinite-dimensional systems , 2008, 2008 47th IEEE Conference on Decision and Control.
[15] N. Bourbaki. Topological Vector Spaces , 1987 .
[16] H. Glüsing-Lüerssen,et al. A Behavioral Approach To Delay-Differential Systems , 1997 .
[17] Alban Quadrat,et al. The Fractional Representation Approach to Synthesis Problems: An Algebraic Analysis Viewpoint Part I: (Weakly) Doubly Coprime Factorizations , 2003, SIAM J. Control. Optim..
[18] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[19] Yutaka Yamamoto,et al. Pseudo-rational input/output maps and their realizations: a fractional representation approach to in , 1988 .
[20] Henri Bourlès,et al. Duality for Differential-Difference Systems over Lie Groups , 2009, SIAM J. Control. Optim..
[21] B. A. Taylor,et al. A new look at interpolation theory for entire functions of one variable , 1979 .
[22] Henri Bourlès,et al. Elimination, fundamental principle and duality for analytic linear systems of partial differential-difference equations with constant coefficients , 2012, Math. Control. Signals Syst..
[23] L. Ehrenpreis,et al. Solution of Some Problems of Division. Part IV. Invertible and Elliptic Operators , 1960 .
[24] L. Ehrenpreis. Fourier analysis in several complex variables , 1970 .
[25] Jan C. Willems,et al. Behavioral Controllability of Delay-Differential Systems , 1997 .
[26] Heide Gluesing-Luerssen,et al. Linear Delay-Differential Systems with Commensurate Delays: An Algebraic Approach , 2001 .
[27] L. Ehrenpreis,et al. Solutions of Some Problems of Division: Part III. Division in the Spaces, D , H, Q A , O , 1956 .
[28] Michel Fliess,et al. Interpretation and Comparison of Various Types of Delay System Controllabilities 1 , 1995 .
[29] S. Zampieri,et al. Stability and stabilizability of delay-differential systems , 2006 .
[30] Alban Quadrat,et al. The Fractional Representation Approach to Synthesis Problems: An Algebraic Analysis Viewpoint Part II: Internal Stabilization , 2003, SIAM J. Control. Optim..
[31] François Parreau,et al. Schwartz's theorem on mean periodic vector-valued functions , 1989 .
[32] Sandro Zampieri,et al. Module theoretic approach to controllability of convolutional systems , 2002 .
[33] Ulrich Oberst,et al. Variations on the fundamental principle for linear systems of partial differential and difference equations with constant coefficients , 1995, Applicable Algebra in Engineering, Communication and Computing.
[34] Sandro Zampieri,et al. Controllability of Systems Described by Convolutional or Delay-Differential Equations , 2000, SIAM J. Control. Optim..
[35] Luc C. G. J. M. Habets,et al. Equivalence of Convolution Systems in a Behavioral Framework , 2003, Math. Control. Signals Syst..