A survey on flows in graphs and matroids

A quintessential minimax relation is the Max-Flow Min-Cut Theorem which states that the largest amount of flow that can be sent between a pair of vertices in a graph is equal to the capacity of the smallest bottleneck separating these vertices. We survey generalizations of these results to multi-commodity flows and to flows in binary matroids. Two tantalizing conjectures by Seymour on the existence of fractional and integer flows are motivating our work. We will not assume from the reader any background in matroid theory.

[1]  T. C. Hu Multi-Commodity Network Flows , 1963 .

[2]  Bertrand Guenin,et al.  The Cycling Property for the Clutter of Odd st-Walks , 2014, IPCO.

[3]  C. A. Rogers,et al.  Packing and Covering , 1964 .

[4]  Ken-ichi Kawarabayashi,et al.  Packing six T-joins in plane graphs , 2016, J. Comb. Theory, Ser. B.

[5]  B. Rothschild,et al.  MULTICOMMODITY NETWORK FLOWS. , 1969 .

[6]  Bertrand Guenin,et al.  Packing odd T‐joins with at most two terminals , 2014, J. Graph Theory.

[7]  Gérard Cornuéjols,et al.  Ideal Binary Clutters, Connectivity, and a Conjecture of Seymour , 2002, SIAM J. Discret. Math..

[8]  Bertrand Guenin,et al.  A Characterization of Weakly Bipartite Graphs , 1998, Electron. Notes Discret. Math..

[9]  P. Seymour On Odd Cuts and Plane Multicommodity Flows , 1981 .

[10]  W. T. Tutte On the algebraic theory of graph colorings , 1966 .

[11]  Ken-ichi Kawarabayashi,et al.  Edge-colouring seven-regular planar graphs , 2015, J. Comb. Theory, Ser. B.

[12]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[13]  Paul D. Seymour,et al.  Edge-colouring eight-regular planar graphs , 2015, J. Comb. Theory, Ser. B.

[14]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[15]  Bertrand Guenin,et al.  Integral Polyhedra Related to Even-Cycle and Even-Cut Matroids , 2002, Math. Oper. Res..

[16]  Robin Thomas,et al.  Three-edge-colouring doublecross cubic graphs , 2016, J. Comb. Theory, Ser. B.

[17]  Paul D. Seymour,et al.  The matroids with the max-flow min-cut property , 1977, J. Comb. Theory B.

[18]  Jaime Cohen,et al.  Minimax relations for T-join packing problems , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.

[19]  James F. Geelen,et al.  Packing Odd Circuits in Eulerian Graphs , 2002, J. Comb. Theory, Ser. B.

[20]  Paul D. Seymour,et al.  Decomposition of regular matroids , 1980, J. Comb. Theory, Ser. B.

[21]  Paul D. Seymour,et al.  Matroids and Multicommodity Flows , 1981, Eur. J. Comb..

[22]  R. J. Duffin,et al.  The extremal length of a network , 1962 .

[23]  Robin Thomas,et al.  Tutte's Edge-Colouring Conjecture , 1997, J. Comb. Theory, Ser. B.

[24]  B. Rothschild,et al.  Feasibility of Two Commodity Network Flows , 1966, Oper. Res..

[25]  Leanne Stuive,et al.  Single Commodity-Flow Algorithms for Lifts of Graphic and Co-graphic Matroids , 2013, IPCO.

[26]  Klaus Truemper,et al.  Max-Flow Min-Cut Matroids: Polynomial Testing and Polynomial Algorithms for Maximum Flow and Shortest Routes , 1987, Math. Oper. Res..

[27]  Arthur Cayley The Collected Mathematical Papers: On the colouring of maps , 1879 .