Convergence of iterative methods for multiple zeros

In this chapter we study the convergence, as well as the dynamics, of some high order family of iterative methods.

[1]  Jinwen Ma,et al.  Fifth-order iterative method for finding multiple roots of nonlinear equations , 2011, Numerical Algorithms.

[2]  Qingbiao Wu,et al.  New variants of Jarratt’s method with sixth-order convergence , 2009, Numerical Algorithms.

[3]  S. Amat,et al.  Chaotic dynamics of a third-order Newton-type method , 2010 .

[4]  W. Rheinboldt An adaptive continuation process for solving systems of nonlinear equations , 1978 .

[5]  Changbum Chun,et al.  Corrigendum to "On a family of Laguerre methods to find multiple roots of nonlinear equations" , 2014, Appl. Math. Comput..

[6]  Ioannis K. Argyros,et al.  On the local convergence and the dynamics of Chebyshev-Halley methods with six and eight order of convergence , 2016, J. Comput. Appl. Math..

[7]  José M. Gutiérrez,et al.  Recurrence Relations for the Super-Halley Method , 1998 .

[8]  Alicia Cordero,et al.  Dynamics of a family of Chebyshev-Halley type methods , 2012, Appl. Math. Comput..

[9]  Alicia Cordero,et al.  Chaos in King's iterative family , 2013, Appl. Math. Lett..

[10]  José Antonio Ezquerro,et al.  On the R-order of the Halley method , 2005 .

[11]  Á. Magreñán,et al.  A new fourth-order family for solving nonlinear problems and its dynamics , 2015, Journal of Mathematical Chemistry.

[12]  Alicia Cordero,et al.  On the convergence of a higher order family of methods and its dynamics , 2017, J. Comput. Appl. Math..

[13]  Changbum Chun,et al.  Some improvements of Jarratt's method with sixth-order convergence , 2007, Appl. Math. Comput..

[14]  Alicia Cordero,et al.  Drawing Dynamical and Parameters Planes of Iterative Families and Methods , 2013, TheScientificWorldJournal.

[15]  Sanjeev Kumar,et al.  Development and analysis of some new iterative methods for numerical solutions of nonlinear equations , 2012 .

[16]  Ioannis K. Argyros,et al.  Local Convergence and the Dynamics of a Two-Step Newton-Like Method , 2016, Int. J. Bifurc. Chaos.

[17]  Sergio Amat,et al.  A modified Chebyshev's iterative method with at least sixth order of convergence , 2008, Appl. Math. Comput..

[18]  Ángel Alberto Magreñán,et al.  A biparametric extension of King's fourth-order methods and their dynamics , 2016, Appl. Math. Comput..

[19]  Changbum Chun,et al.  On a family of Laguerre methods to find multiple roots of nonlinear equations , 2013, Appl. Math. Comput..

[20]  Ángel Alberto Magreñán,et al.  A new tool to study real dynamics: The convergence plane , 2013, Appl. Math. Comput..

[21]  Ioannis K. Argyros,et al.  Convergence radius of the modified Newton method for multiple zeros under Hölder continuous derivative , 2010, Appl. Math. Comput..

[23]  Ioannis K. Argyros,et al.  On the convergence of an optimal fourth-order family of methods and its dynamics , 2015, Appl. Math. Comput..

[24]  J. Traub Iterative Methods for the Solution of Equations , 1982 .

[25]  Hernández,et al.  Sufficient conditions for semilocal convergence of a fourth order multipoint iterative method for solving equations in Banach spaces. , 1999 .

[26]  Yongzhong Song,et al.  On the convergence radius of the modified Newton method for multiple roots under the center–Hölder condition , 2013, Numerical Algorithms.

[27]  Alicia Cordero,et al.  Variants of Newton's Method using fifth-order quadrature formulas , 2007, Appl. Math. Comput..

[28]  Liao Xiangke,et al.  A new fourth-order iterative method for finding multiple roots of nonlinear equations , 2009 .

[29]  Alicia Cordero,et al.  Stability analysis of a parametric family of iterative methods for solving nonlinear models , 2016, Appl. Math. Comput..

[30]  Ángel Alberto Magreñán,et al.  Different anomalies in a Jarratt family of iterative root-finding methods , 2014, Appl. Math. Comput..

[31]  S. Amat,et al.  Dynamics of the King and Jarratt iterations , 2005 .

[32]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[33]  Alicia Cordero,et al.  Stability study of eighth-order iterative methods for solving nonlinear equations , 2016, J. Comput. Appl. Math..

[34]  Ioannis K. Argyros,et al.  A study on the local convergence and the dynamics of Chebyshev–Halley–type methods free from second derivative , 2015, Numerical Algorithms.

[35]  Ángel Alberto Magreñán,et al.  A variant of Steffensen-King's type family with accelerated sixth-order convergence and high efficiency index: Dynamic study and approach , 2015, Appl. Math. Comput..

[36]  Á. Alberto Magreñán,et al.  On the election of the damped parameter of a two-step relaxed Newton-type method , 2016 .

[37]  Beny Neta,et al.  Multipoint Methods for Solving Nonlinear Equations , 2012 .

[38]  Antonio Marquina,et al.  Recurrence relations for rational cubic methods I: The Halley method , 1990, Computing.

[39]  Ángel Alberto Magreñán,et al.  The "Gauss-Seidelization" of iterative methods for solving nonlinear equations in the complex plane , 2011, Appl. Math. Comput..

[40]  Xiuhua Wang,et al.  Semilocal convergence of a modified multi-point Jarratt method in Banach spaces under general continuity condition , 2012, Numerical Algorithms.

[41]  P. Jarratt Some fourth order multipoint iterative methods for solving equations , 1966 .

[42]  Ioannis K. Argyros,et al.  Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions , 2017, Numerical Algorithms.

[43]  M. A. Hernández Chebyshev's Approximation Algorithms and Applications , 2001 .

[44]  Rajni Sharma,et al.  A sixth order transformation method for finding multiple roots of nonlinear equations and basin attractors for various methods , 2015, Appl. Math. Comput..

[45]  Á. Alberto Magreñán,et al.  Fractal Dimension of the Universal Julia Sets for the Chebyshev‐Halley Family of Methods , 2011 .

[46]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[47]  Antonio Marquina,et al.  Recurrence relations for rational cubic methods II: The Chebyshev method , 1991, Computing.

[48]  Á. Alberto Magreñán,et al.  Local convergence and a chemical application of derivative free root finding methods with one parameter based on interpolation , 2016, Journal of Mathematical Chemistry.