Mesh Independent Superlinear PCG Rates Via Compact-Equivalent Operators

The subject of the paper is the mesh independent convergence of the preconditioned conjugate gradient (PCG) method for nonsymmetric elliptic problems. The approach of equivalent operators is involved, in which one uses the discretization of another suitable elliptic operator as preconditioning matrix. By introducing the notion of compact-equivalent operators, it is proved that for a wide class of elliptic problems the superlinear convergence of the obtained PCG method is mesh independent under finite element discretizations; that is, the rate of superlinear convergence is given in the form of a sequence which is mesh independent and is determined only by the elliptic operators.

[1]  I. Gohberg,et al.  Classes of Linear Operators , 1990 .

[2]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[3]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[4]  Tamás Kurics,et al.  Superlinearly convergent PCG algorithms for some nonsymmetric elliptic systems , 2008 .

[5]  R. Winther Some Superlinear Convergence Results for the Conjugate Gradient Method , 1980 .

[6]  O. Widlund A Lanczos Method for a Class of Nonsymmetric Systems of Linear Equations , 1978 .

[7]  O. Axelsson A generalized conjugate gradient, least square method , 1987 .

[8]  O. Axelsson Iterative solution methods , 1995 .

[9]  P. Swarztrauber THE METHODS OF CYCLIC REDUCTION, FOURIER ANALYSIS AND THE FACR ALGORITHM FOR THE DISCRETE SOLUTION OF POISSON'S EQUATION ON A RECTANGLE* , 1977 .

[10]  Zenon Fortuna Some Convergence Properties of the Conjugate Gradient Method in Hilbert Space , 1979 .

[11]  J. Karátson,et al.  Symmetric Part Preconditioning for the Conjugate Gradient Method in Hilbert Space , 2003 .

[12]  M. Schultz,et al.  Preconditioning by fast direct methods for nonself-adjoint nonseparable elliptic equations , 1986 .

[13]  Thomas A. Manteuffel,et al.  Preconditioning and boundary conditions without H 2 estimates: L 2 condition numbers and the distribution of the singular values , 1993 .

[14]  O. Axelsson,et al.  ON THE RATE OF CONVERGENCE OF THE CONJUGATE GRADIENT METHOD FOR LINEAR OPERATORS IN HILBERT SPACE , 2002 .

[15]  Owe Axelsson,et al.  Superlinearly convergent CG methods via equivalent preconditioning for nonsymmetric elliptic operators , 2004, Numerische Mathematik.

[16]  István Antal,et al.  A mesh independent superlinear algorithm for some nonlinear nonsymmetric elliptic systems , 2008, Comput. Math. Appl..

[17]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[18]  János Karátson,et al.  Mesh independent superlinear convergence estimates of the conjugate gradient method for some equivalent self-adjoint operators , 2005 .

[19]  I. Gohberg,et al.  Basic Operator Theory , 1981 .

[20]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[21]  Thomas A. Manteuffel,et al.  Optimal equivalent preconditioners , 1993 .

[22]  T. Manteuffel,et al.  Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .

[23]  Tuomo Rossi,et al.  A Parallel Fast Direct Solver for Block Tridiagonal Systems with Separable Matrices of Arbitrary Dimension , 1999, SIAM J. Sci. Comput..

[24]  János Karátson,et al.  Superlinear PCG Algorithms: Symmetric Part Preconditioning and Boundary Conditions , 2008 .

[25]  P. Swarztrauber A direct Method for the Discrete Solution of Separable Elliptic Equations , 1974 .

[26]  Owe Axelsson,et al.  A combined method of local Green's functions and central difference method for singularly perturbed convection-diffusion problems , 2003 .

[27]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[28]  Gene H. Golub,et al.  A generalized conjugate gradient method for non-symmetric systems of linear equations , 2007, Milestones in Matrix Computation.

[29]  O. Nevanlinna Convergence of Iterations for Linear Equations , 1993 .

[30]  T. Manteuffel,et al.  A taxonomy for conjugate gradient methods , 1990 .

[31]  Zahari Zlatev,et al.  Computer Treatment of Large Air Pollution Models , 1995 .

[32]  Thomas A. Manteuffel,et al.  On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations , 1990 .