Current challenges in membrane separation of CO2 from natural gas: A review

In recent year, the need for more energy efficient and environmental friendly gas purification techniques has lead to massive research efforts into membrane based gas separation technology. Today, this technology is widely used in removal of CO2 from raw natural gas components. Penetrant-induced plasticization, physical aging, conditioning and poor balance between permeability and selectivity are some of the major challenges facing the expansion of membrane market in industrial application. A comprehensive review of research efforts in alleviating these problems is required to capture details of the progresses that have already been achieved in developing membrane materials with better CO2 separation performance. This paper presents details of recent research progresses that have been recorded in the context of breakthrough and challenges in development of membrane materials. Descriptions of membrane preparation methods that have been investigated to develop membranes with better gas separation performance are discussed.

[1]  P. Pfromm,et al.  Aging of thin polyimide-ceramic and polycarbonate-ceramic composite membranes , 1993 .

[2]  A. Ahmad,et al.  Preparation of Silica/γ-Alumina Membrane with Bimodal Porous Layer for Improved Permeation in Ions Separation , 2008 .

[3]  Tai‐Shung Chung,et al.  The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review , 2009 .

[4]  N. Peng,et al.  Evolution of ultra-thin dense-selective layer from single-layer to dual-layer hollow fibers using novel Extem® polyetherimide for gas separation , 2010 .

[5]  H. Kita,et al.  Gas Permeation Properties of Flexible Pyrolytic Membranes from Sulfonated Polyimides , 2002 .

[6]  P. Pfromm The Impact of Physical Aging of Amorphous Glassy Polymers on Gas Separation Membranes , 2006 .

[7]  W. Koros,et al.  Decarboxylation-Induced Cross-Linking of a Polyimide for Enhanced CO2 Plasticization Resistance , 2008 .

[8]  J. Vlassak,et al.  The effect of porogen loading on the stiffness and fracture energy of brittle organosilicates , 2009 .

[9]  W. Oh,et al.  Imprinting Well‐Controlled Nanopores in Organosilicate Dielectric Films: Triethoxysilyl‐Modified Six‐Armed Poly(ϵ‐caprolactone) and Its Chemical Hybridization with an Organosilicate Precursor , 2005 .

[10]  Benny D. Freeman,et al.  Gas solubility, diffusivity and permeability in poly(ethylene oxide) , 2004 .

[11]  Jean-Yves Sanchez,et al.  Gas transport properties of poly(ethylene oxide-co-epichlorohydrin) membranes , 2004 .

[12]  D. R. Paul,et al.  Effect of antiplasticization on gas sorption and transport. III. Free volume interpretation , 1987 .

[13]  K. Nagai,et al.  Effect of physical aging of poly(1-trimethylsilyl-1-propyne) films synthesized with TaCl5 and NbCl5 on gas permeability, fractional free volume, and positron annihilation lifetime spectroscopy parameters , 2000 .

[14]  F. A. Ruiz-Treviño,et al.  Gas permselectivity properties of high free volume polymers modified by a low molecular weight additive , 1998 .

[15]  C. Cornelius,et al.  The gas separation effects of annealing polyimide–organosilicate hybrid membranes , 2003 .

[16]  I. Pinnau,et al.  Gas transport through integral-asymmetric membranes: A comparison to isotropic film transport properties , 1993 .

[17]  Yongjiang Huang,et al.  Physical aging of thin glassy polymer films monitored by optical properties , 2006 .

[18]  D. R. Paul,et al.  Effect of antiplasticization on gas sorption and transport. I. Polysulfone , 1987 .

[19]  A. Ismail Preparation of Carbon Membranes for Gas Separation , 2010 .

[20]  Jingshe Song,et al.  High-Performance Carboxylated Polymers of Intrinsic Microporosity (PIMs) with Tunable Gas Transport Properties† , 2009 .

[21]  Donald R Paul,et al.  Natural gas permeation in polyimide membranes , 2004 .

[22]  W. S. Winston Ho,et al.  CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol) , 2006 .

[23]  Benny D. Freeman,et al.  Gas Permeation and Diffusion in Cross-Linked Poly(ethylene glycol diacrylate) , 2006 .

[24]  Saad Makhseed,et al.  Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. , 2004, Chemical communications.

[25]  Joel Fried,et al.  Polymer Science and Technology , 1995 .

[26]  Geert Verbong,et al.  istorical variation in the capital costs of natural gas , carbon dioxide and ydrogen pipelines and implications for future infrastructure , 2011 .

[27]  Tomoyuki Suzuki,et al.  Physical and Gas Transport Properties of Novel Hyperbranched Polyimide – Silica Hybrid Membranes , 2005 .

[28]  C. P. Ribeiro,et al.  Gas permeability, diffusivity, and free volume of thermally rearranged polymers based on 3,3′-dihydroxy-4,4′-diamino-biphenyl (HAB) and 2,2′-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) , 2012 .

[29]  I. Vankelecom,et al.  Mixed-gas CO2/CH4 and CO2/N2 separation with sulfonated PEEK membranes , 2011 .

[30]  Yi Li,et al.  Superior gas separation performance of dual-layer hollow fiber membranes with an ultrathin dense-selective layer , 2008 .

[31]  Leo Choe Peng,et al.  Membrane Separation of CO2 from Natural Gas: A State-of-the-Art Review on Material Development , 2013 .

[32]  W. Koros,et al.  Energy and Environmental Issues and Impacts of Membranes in Industry , 2009 .

[33]  Donald R Paul,et al.  Sub-TgCross-Linking of a Polyimide Membrane for Enhanced CO2Plasticization Resistance for Natural Gas Separation , 2011 .

[34]  W. A. Poe,et al.  Handbook of Natural Gas Transmission and Processing , 2006 .

[35]  S. Bhatia,et al.  Ba-SAPO-34 membrane synthesized from microwave heating and its performance for CO2/CH4 gas separation , 2011 .

[36]  Pavel Kratochvíl,et al.  Glossary of basic terms in polymer science (IUPAC Recommendations 1996) , 1996 .

[37]  D. R. Paul,et al.  Effect of antiplasticization on gas sorption and transport. II. Poly(phenylene oxide) , 1987 .

[38]  Colin A. Scholes,et al.  Plasticization of ultra-thin polysulfone membranes by carbon dioxide , 2010 .

[39]  W. Koros,et al.  Antiplasticization and plasticization of Matrimid® asymmetric hollow fiber membranes—Part A. Experimental , 2010 .

[40]  I. Hussein,et al.  Bulk and Surface Mechanical Properties of Clay Modified HDPE used in Liner Applications , 2012 .

[41]  H. Beckham,et al.  Antiplasticization-based enhancement of poly(ethylene terephthalate) barrier properties , 2012 .

[42]  W. Koros,et al.  Recent Progress in Mixed‐Matrix Membranes , 2008 .

[43]  Y. Lee,et al.  Thermally rearranged (TR) poly(benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity , 2010 .

[44]  E. R. Kafchinski,et al.  Aging phenomenon of 6FDA-polyimide/polyacrylonitrile composite hollow fibers , 1996 .

[45]  D. R. Paul,et al.  Experimental methods for tracking physical aging of thin glassy polymer films by gas permeation , 2004 .

[46]  B. Flaconneche,et al.  Permeability, Diffusion and Solubility of Gases in Polyethylene, Polyamide 11 and Poly (Vinylidene Fluoride) , 2001 .

[47]  B. Freeman,et al.  Plasticization-Enhanced Hydrogen Purification Using Polymeric Membranes , 2006, Science.

[48]  S. Kulprathipanja,et al.  Novel Ag+‐zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity , 2007 .

[49]  Neil B. McKeown,et al.  Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: Polybenzodioxane PIM-1 , 2008 .

[50]  C. Téllez,et al.  Mesoporous silica sphere-polysulfone mixed matrix membranes for gas separation. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[51]  Richard W. Baker,et al.  Natural Gas Processing with Membranes: An Overview , 2008 .

[52]  M. Sadrzadeh,et al.  Effect of synthesis parameters on single gas permeation through T-type zeolite membranes , 2008 .

[53]  Yi Li,et al.  Highly selective sulfonated polyethersulfone (SPES)-based membranes with transition metal counterions for hydrogen recovery and natural gas separation , 2008 .

[54]  Rahul Anantharaman,et al.  Design and off-design analyses of a pre-combustion CO2 capture process in a natural gas combined cycle power plant , 2009 .

[55]  Tai-Shung Chung,et al.  Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes , 2001 .

[56]  Benny D. Freeman,et al.  Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes , 1999 .

[57]  Vincenzo Balzani,et al.  Energy for a Sustainable World: From the Oil Age to a Sun-Powered Future , 2011 .

[58]  L. Robeson,et al.  The upper bound revisited , 2008 .

[59]  Yen-Hsin Liu,et al.  Formation of high-performance 6FDA-2,6-DAT asymmetric composite hollow fiber membranes for CO2/CH4 separation , 2002 .

[60]  F. Švec,et al.  Design and synthesis of macroporous polymeric separation media based on substituted phenols , 1990 .

[61]  Youchang Xiao,et al.  Grafting thermally labile molecules on cross-linkable polyimide to design membrane materials for natural gas purification and CO2 capture , 2011 .

[62]  S. A. Stern,et al.  Structure/Permeability Relationships of Silicon-Containing Polyimides. , 1990 .

[63]  Wen-Hui Lin,et al.  The physical aging phenomenon of 6FDA-durene polyimide hollow fiber membranes , 2000 .

[64]  G. Robertson,et al.  Decarboxylation-Induced Cross-Linking of Polymers of Intrinsic Microporosity (PIMs) for Membrane Gas Separation† , 2012 .

[65]  Lan Ying Jiang,et al.  Fabrication of mixed matrix hollow fibers with intimate polymer–zeolite interface for gas separation , 2006 .

[66]  Benny D. Freeman,et al.  Gas permeation properties of poly(urethane-urea)s containing different polyethers , 2011 .

[67]  Pei Li,et al.  Natural gas purification and olefin/paraffin separation using cross-linkable 6FDA-Durene/DABA co-polyimides grafted with α, β, and γ-cyclodextrin , 2012 .

[68]  W. Koros,et al.  Gas Separation by Carbon Membranes , 2008 .

[69]  Norman R. Horn,et al.  Carbon dioxide plasticization of thin glassy polymer films , 2011 .

[70]  S. Bhatia,et al.  Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2). , 2010, Advances in colloid and interface science.

[71]  T. Merkel,et al.  Mixed Gas Permeation of Syngas Components in Poly (dimethylsiloxane) and Poly (1-trimethylsilyl-1-propyne) at Elevated Temperatures , 2001 .

[72]  N. Belov,et al.  Addition-type polynorbornene with Si(CH3)3 side groups: Detailed study of gas permeation and thermodynamic properties , 2008 .

[73]  Seyed Saeid Hosseini,et al.  Gas separation membranes developed through integration of polymer blending and dual-layer hollow fiber spinning process for hydrogen and natural gas enrichments , 2010 .

[74]  Y. Lee,et al.  Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture , 2012 .

[75]  L. Archer,et al.  Principles of Polymer Systems , 1982 .

[76]  Chun Cao,et al.  Fabrication of Matrimid/polyethersulfone dual-layer hollow fiber membranes for gas separation , 2004 .

[77]  Neil B. McKeown,et al.  Gas separation membranes from polymers of intrinsic microporosity , 2005 .

[78]  A. Ismail,et al.  Morphology and permeation properties of polysulfone membranes for gas separation: Effects of non-solvent additives and co-solvent , 2010 .

[79]  Massimo Morbidelli,et al.  Production of Polymeric Materials with Controlled Pore Structure: the “Reactive Gelation” Process , 2005 .

[80]  Dongfei Li,et al.  Development of asymmetric 6FDA-2,6 DAT hollow fiber membranes for CO 2/CH 4 separation , 2002 .

[81]  Jae Eun Lee,et al.  Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement , 2010 .

[82]  Akon Higuchi,et al.  Morphology and gas permeability in copolyimides containing polydimethylsiloxane block , 2002 .

[83]  Tomoyuki Suzuki,et al.  Chapter 8. Physical and Gas Transport Properties of Hyperbranched Polyimide–Silica Hybrid Membranes , 2010 .

[84]  Yi Li,et al.  Silver ionic modification in dual-layer hollow fiber membranes with significant enhancement in CO2/CH4 and O2/N2 separation , 2010 .

[85]  B. Freeman,et al.  MATERIALS SELECTION GUIDELINES FOR MEMBRANES THAT REMOVE CO2 FROM GAS MIXTURES , 2005 .

[86]  L. Mathias,et al.  Thermal Conversion of Hydroxy-Containing Imides to Benzoxazoles: Polymer and Model Compound Study , 1999 .

[87]  Benny D. Freeman,et al.  Gas and Vapor Solubility in Cross-Linked Poly(ethylene Glycol Diacrylate) , 2005 .

[88]  S. Kaliaguine,et al.  Diamino-organosilicone APTMDS: A new cross-linking agent for polyimides membranes , 2012 .

[89]  F. Faupel,et al.  Gas permeability and free volume in poly(amide-b-ethylene oxide)/ polyethylene glycol blend membranes , 2009 .

[90]  Chad L. Staiger,et al.  Gas separation, free volume distribution, and physical aging of a highly microporous spirobisindane polymer , 2008 .

[91]  Robert Ebewele,et al.  Polymer Science and Technology , 2000 .

[92]  A. Kidnay,et al.  Fundamentals of Natural Gas Processing , 2006 .

[93]  D. Tsai,et al.  Synthesis and Permeation Properties of Silicon-Carbon-Based Inorganic Membrane for Gas Separation , 2001 .

[94]  Norman R. Horn,et al.  Aging and carbon dioxide plasticization of thin polyetherimide films , 2012 .

[95]  J. Ubbink,et al.  Plasticization, antiplasticization, and molecular packing in amorphous carbohydrate-glycerol matrices. , 2010, Biomacromolecules.

[96]  Enrico Drioli,et al.  Membrane Gas Separation: A Review/State of the Art , 2009 .

[97]  A. F. Oleinik,et al.  Polybenzoxazoles, their synthesis and thermal degradation , 1966 .

[98]  Geoff W. Stevens,et al.  CO2 capture from pre-combustion processes—Strategies for membrane gas separation , 2010 .

[99]  P. Budd,et al.  Free volume and intrinsic microporosity in polymers , 2005 .

[100]  Yongjiang Huang,et al.  Physical aging of thin glassy polymer films monitored by gas permeability , 2004 .

[101]  Benny D. Freeman,et al.  On the effects of plasticization in CO2/light gas separation using polymeric solubility selective membranes , 2011 .

[102]  Abdul Latif Ahmad,et al.  Optimization of membrane performance by thermal-mechanical stretching process using responses surface methodology (RSM) , 2009 .

[103]  W. Oh,et al.  Ultralow-k nanoporous organosilicate dielectric films imprinted with dendritic spheres , 2005, Nature materials.

[104]  W. Koros,et al.  Responses of 6FDA-based polyimide thin membranes to CO2 exposure and physical aging as monitored by gas permeability , 2011 .

[105]  J. Way,et al.  Hollow Fiber Inorganic Membranes for Gas Separations , 1992 .

[106]  H. Kawakami,et al.  Gas permeation stability of asymmetric polyimide membrane with thin skin layer: effect of molecular weight of polyimide , 2002 .

[107]  K. Mohanty,et al.  Preparation and Applications of Zeolite Membranes: A Review , 2011 .

[108]  Jingshe Song,et al.  Polymers of Intrinsic Microporosity Containing Trifluoromethyl and Phenylsulfone Groups as Materials for Membrane Gas Separation , 2008 .

[109]  Matthias Wessling,et al.  Highly hydrophilic, rubbery membranes for CO2 capture and dehydration of flue gas , 2011 .

[110]  C. Téllez,et al.  Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation , 2011 .

[111]  Young Moo Lee,et al.  Polymers with Cavities Tuned for Fast Selective Transport of Small Molecules and Ions , 2007, Science.

[112]  D. R. Paul,et al.  Effect of antiplasticization on selectivity and productivity of gas separation membranes , 1987 .

[113]  Songlin Liu,et al.  The evolution of poly(hydroxyamide amic acid) to poly(benzoxazole) via stepwise thermal cyclization: Structural changes and gas transport properties , 2011 .

[114]  Ken-ichi Okamoto,et al.  Structure and Transport Properties of Polyimides as Materials for Gas and Vapor Membrane Separation , 2006 .

[115]  Naiying Du,et al.  Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity ( PIM-1 ) , 2012 .

[116]  Jixiao Wang,et al.  Influence of heat-treatment on CO2 separation performance of novel fixed carrier composite membranes prepared by interfacial polymerization , 2006 .

[117]  Christopher R. Mason,et al.  Polymer of Intrinsic Microporosity Incorporating Thioamide Functionality: Preparation and Gas Transport Properties , 2011 .

[118]  L. Pessan,et al.  Effect of antiplasticisation on the volumetric, gas sorption and transport properties of polyetherimide , 2003 .

[119]  D. Guzmán‐Lucero,et al.  Imide-to-benzoxazole rearrangement in ortho substituted poly(4-4'-diphenylene pyromellitimide)s , 2002 .

[120]  Peter H. Pfromm,et al.  Accelerated Physical Aging of Thin Poly[1-(trimethylsilyl)-1-propyne] Films , 2000 .

[121]  P. Tin,et al.  Effects of cross-linking modification on gas separation performance of Matrimid membranes , 2003 .

[122]  Tai‐Shung Chung,et al.  Fabrication of dual-layer polyethersulfone (PES) hollow fiber membranes with an ultrathin dense-selective layer for gas separation , 2004 .

[123]  Yu. P. Yampolskii,et al.  Mechanism of aging of poly[1-(trimethylsilyl)-1-propyne] and its effect on gas permeability , 2004 .

[124]  Stephen J. Miller,et al.  Effects of CO2 on a High Performance Hollow-Fiber Membrane for Natural Gas Purification , 2010 .

[125]  D. R. Paul,et al.  Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical agingPart I. Experimental observations , 2000 .

[126]  G. W. Meindersma,et al.  Implementing membrane technology in the process industry : problems and opportunities , 1996 .

[127]  Tai‐Shung Chung,et al.  Chemical cross-linking modification of polyimide membranes for gas separation , 2001 .

[128]  E. Morallón,et al.  A conducting nanocomposite via intercalative polymerisation of 2-methylaniline with aniline in montmorillonite cation-exchanged , 2012, Journal of Polymer Research.

[129]  M. Weck,et al.  Template-enhanced ring-opening metathesis polymerization , 2007 .

[130]  H. Mark,et al.  Principles of Plasticization , 1965 .

[131]  Richard W. Baker,et al.  Research needs in the membrane separation industry: Looking back, looking forward , 2010 .

[132]  Yi Li,et al.  MIXED MATRIX MEMBRANES (MMMS) COMPRISING ORGANIC POLYMERS WITH DISPERSED INORGANIC FILLERS FOR GAS SEPARATION , 2007 .

[133]  M. L. Chua,et al.  Effects of thermally labile saccharide units on the gas separation performance of highly permeable polyimide membranes , 2012 .

[134]  R. Baker Future directions of membrane gas separation technology , 2002 .

[135]  Ryan P. Lively,et al.  Water and beyond: Expanding the spectrum of large‐scale energy efficient separation processes , 2012 .

[136]  R. Mahajan,et al.  Pushing the limits on possibilities for large scale gas separation: which strategies? , 2000 .

[137]  Shuichi Sato,et al.  Synthesis and Gas Permeability of Hyperbranched and Cross‐Linked Polyimide Membranes , 2010 .

[138]  P. Budd,et al.  Gas Permeation Parameters and Other Physicochemical Properties of a Polymer of Intrinsic Microporosity (PIM‐1) , 2010 .

[139]  P. H. Kösters,et al.  Ceramic Membranes for Gas Separation - Recent Developments and State of the Art , 2005 .

[140]  William J. Koros,et al.  Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking , 1999 .

[141]  Anita J. Hill,et al.  Thermally rearranged (TR) polymer membranes for CO2 separation , 2010 .

[142]  Young Moo Lee,et al.  Polymeric Membrane Materials and Potential Use in Gas Separation , 2008 .

[143]  H. Kita,et al.  Preparation and gas separation performance of flexible pyrolytic membranes by low-temperature pyrolysis of sulfonated polyimides , 2005 .

[144]  A. Ahmad,et al.  Tailoring of a γ-Alumina Membrane with a Bimodal Pore Size Distribution for Improved Permeability , 2007 .

[145]  Marcel Mulder,et al.  Basic Principles of Membrane Technology , 1991 .

[146]  Stephen J. Miller,et al.  Crosslinked mixed matrix membranes for the purification of natural gas: Effects of sieve surface modification , 2008 .

[147]  D. R. Paul,et al.  Fundamentals of Membrane Gas Separation , 2009 .

[148]  W. Koros,et al.  Thickness‐dependent sorption and effects of physical aging in a polyimide sample , 2005 .

[149]  Brian F. Towler,et al.  Polymer-inorganic nanocomposite membranes for gas separation , 2007 .

[150]  Pei Li,et al.  Molecular engineering of PIM-1/Matrimid blend membranes for gas separation , 2012 .

[151]  Tai‐Shung Chung,et al.  Development of asymmetric 6FDA-2,6DAT hollow fiber membranes for CO2/CH4 separation. Part 2. Suppression of plasticization , 2003 .

[152]  A. Tena,et al.  Partially pyrolyzed membranes (PPMs) derived from copolyimides having carboxylic acid groups. Preparation and gas transport properties , 2010 .

[153]  Norman R. Horn,et al.  Carbon dioxide plasticization and conditioning effects in thick vs. thin glassy polymer films , 2011 .

[154]  O. Okay,et al.  Macroporous copolymer networks , 2000 .

[155]  Ashwani Kumar,et al.  Simulation of membrane-based CO2 capture in a coal-fired power plant ☆ , 2013 .

[156]  Arnab Bhattacharya,et al.  Grafting: a versatile means to modify polymers Techniques, factors and applications , 2004 .

[157]  Ting Yang,et al.  Natural gas purification and olefin/paraffin separation using cross-linkable dual-layer hollow fiber membranes comprising β-Cyclodextrin , 2012 .

[158]  Huan Wang,et al.  The evolution of physicochemical and gas transport properties of thermally rearranged polyhydroxyami , 2011 .

[159]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[160]  B. Freeman,et al.  Physical aging of layered glassy polymer films via gas permeability tracking , 2011 .

[161]  Y. Yeong,et al.  Thermal induced structural rearrangement of cardo-copolybenzoxazole membranes for enhanced gas transport properties , 2012 .

[162]  D. R. Paul,et al.  Gas transport properties of adamantane-based polysulfones , 1995 .

[163]  Benny D. Freeman,et al.  Pure- and mixed-gas carbon dioxide/ethane permeability and diffusivity in a cross-linked poly(ethyle , 2011 .

[164]  Norman R. Horn,et al.  Carbon Dioxide Sorption and Plasticization of Thin Glassy Polymer Films Tracked by Optical Methods , 2012 .

[165]  Tai‐Shung Chung,et al.  The ageing phenomenon of polyethersulphone hollow fibre membranes for gas separation and their characteristics , 1999 .

[166]  Anita J. Hill,et al.  Crosslinking poly[1-(trimethylsilyl)-1-propyne] and its effect on physical stability , 2008 .