Adversarial Pulmonary Pathology Translation for Pairwise Chest X-Ray Data Augmentation

Recent works show that Generative Adversarial Networks (GANs) can be successfully applied to chest X-ray data augmentation for lung disease recognition. However, the implausible and distorted pathology features generated from the less than perfect generator may lead to wrong clinical decisions. Why not keep the original pathology region? We proposed a novel approach that allows our generative model to generate high quality plausible images that contain undistorted pathology areas. The main idea is to design a training scheme based on an image-to-image translation network to introduce variations of new lung features around the pathology ground-truth area. Moreover, our model is able to leverage both annotated disease images and unannotated healthy lung images for the purpose of generation. We demonstrate the effectiveness of our model on two tasks: (i) we invite certified radiologists to assess the quality of the generated synthetic images against real and other state-of-the-art generative models, and (ii) data augmentation to improve the performance of disease localisation.

[1]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[2]  Ronald M. Summers,et al.  ChestX-ray: Hospital-Scale Chest X-ray Database and Benchmarks on Weakly Supervised Classification and Localization of Common Thorax Diseases , 2019, Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics.

[3]  Sebastian Thrun,et al.  Dermatologist-level classification of skin cancer with deep neural networks , 2017, Nature.

[4]  Kaiming He,et al.  Mask R-CNN , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[5]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[6]  Jung-Woo Ha,et al.  StarGAN: Unified Generative Adversarial Networks for Multi-domain Image-to-Image Translation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[7]  Xiaogang Wang,et al.  Deep Learning Face Attributes in the Wild , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[8]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Shahrokh Valaee,et al.  Generalization of Deep Neural Networks for Chest Pathology Classification in X-Rays Using Generative Adversarial Networks , 2017, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[10]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[11]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  M. Jorge Cardoso,et al.  Improving Data Augmentation for Medical Image Segmentation , 2018 .

[13]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[14]  Hayit Greenspan,et al.  Synthetic data augmentation using GAN for improved liver lesion classification , 2018, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).