A Simple Construction for the Barnes-Wall Lattices

A certain family of orthogonal groups (called “Clifford groups” by G. E. Wall) has arisen in a variety of different contexts in recent years. These groups have a simple definition as the automorphism groups of certain generalized Barnes-Wall lattices. This leads to an especially simple construction for the usual Barnes-Wall lattices.

[1]  V. Sidelnikov Spherical 7-Designs in 2n-Dimensional Euclidean Space , 1999 .

[2]  G. David Forney,et al.  Coset codes-II: Binary lattices and related codes , 1988, IEEE Trans. Inf. Theory.

[3]  G. David Forney,et al.  Coset codes-I: Introduction and geometrical classification , 1988, IEEE Trans. Inf. Theory.

[4]  A. Calderbank,et al.  Z4‐Kerdock Codes, Orthogonal Spreads, and Extremal Euclidean Line‐Sets , 1997 .

[5]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[6]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[7]  E. S. Barnes,et al.  Some extreme forms defined in terms of Abelian groups , 1959, Journal of the Australian Mathematical Society.

[8]  Bernhard Runge,et al.  Codes and Siegel modular forms , 1996, Discret. Math..

[9]  E. M. Rains,et al.  Self-Dual Codes , 2002, math/0208001.

[10]  B. Runge On Siegel modular forms part II , 1995, Nagoya Mathematical Journal.

[11]  N. J. A. Sloane,et al.  The Invariants of the Cli ord , 1999 .

[12]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[13]  Andrew M. Gleason,et al.  WEIGHT POLYNOMIALS OF SELF-DUAL CODES AND THE MacWILLIAMS IDENTITIES , 1970 .

[14]  G. E. Wall,et al.  On the Clifford Collineation, Transform and Similarity Groups (IV): An Application to Quadratic Forms , 1962, Nagoya Mathematical Journal.

[15]  Лев Сергеевич Казарин,et al.  О группах, предложенных Сидельниковым@@@On the groups proposed by Sidel'nikov , 1998 .

[16]  R. H. Hardin,et al.  A Group-Theoretic Framework for the Construction of Packings in Grassmannian Spaces , 1999, math/0208002.

[17]  Jr. G. Forney,et al.  Coset Codes-Part 11: Binary Lattices and Related Codes , 1988 .

[18]  V. M. Sidelnikov Orbital spherical 11-designs whose initial point is root of an invariant polynomial , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[19]  T. G. Room,et al.  On the Clifford collineation, transform and similarity groups. (III) Generators and involutions , 1962, Journal of the Australian Mathematical Society.

[20]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[21]  N. J. A. Sloane,et al.  Packing Lines, Planes, etc.: Packings in Grassmannian Spaces , 1996, Exp. Math..

[22]  Bernhard Runge The Schottky ideal , 1995 .

[23]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[24]  David J. Benson,et al.  Polynomial invariants of finite groups , 1993 .

[25]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[26]  Bernhard Runge,et al.  On Siegel modular forms. Part I. , 1993 .

[27]  Jin-Woo Son,et al.  SIEGEL MODULAR FORMS AND THETA SERIES ( , 1993 .

[28]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[29]  V. Sidelnikov On a finite group of matrices generating orbit codes on Euclidean sphere , 1997, Proceedings of IEEE International Symposium on Information Theory.

[30]  T. G. Room,et al.  On the Clifford collineation, transform and similarity groups. II. , 1961 .

[31]  I. Porteous Clifford Algebras and the Classical Groups: The classical groups , 1995 .