The Impact of Optics on Data and Knowledge Base Systems

The authors assess the possible impact of optics on database and knowledge base systems, focusing on storage, interconnection, and processing. Various types of optical disks and page-oriented holographic memories are discussed. In the interconnection section, data communication is discussed at a variety of levels. Under processing, applications involving optical content addressable memories, optical data/knowledge base machines, and optics applied to full text processing will be optoelectronic, with easy technology providing its strength to the problem under consideration. It is noted that optical interconnection is superior to electronic interconnection in many cases and that the rapid advance of optical storage holds the potential of hundreds of megabytes per second data rates from a single storage unit. It is noted that optical processing holds considerable promise but lags behind primarily because digital optical device development is in its infancy. >

[1]  D. Casasent,et al.  Acoustooptic linear algebra processors: Architectures, algorithms, and applications , 1984, Proceedings of the IEEE.

[2]  P. Hariharan,et al.  Optical Holography: Principles, Techniques and Applications , 1987 .

[3]  Peter S. Guilfoyle,et al.  Combinatorial Logic Based Optical Computing , 1986, Other Conferences.

[4]  J. Erickson,et al.  A 1.7 gigabit-per-second, time-multiplexed photonic switching experiment , 1987, IEEE Communications Magazine.

[5]  C. V. Ramamoorthy,et al.  A Design of a Fast Cellular Associative Memory for Ordered Retrieval , 1978, IEEE Transactions on Computers.

[6]  A. Lohmann Polarization and optical logic. , 1986, Applied optics.

[7]  C. Burrus,et al.  The quantum well self-electrooptic effect device: Optoelectronic bistability and oscillation, and self-linearized modulation , 1985 .

[8]  Duncan H. Lawrie,et al.  Supercomputing tradeoffs and the cedar system , 1988 .

[9]  F.J. Leonberger,et al.  Optical interconnections for VLSI systems , 1984, Proceedings of the IEEE.

[10]  P. P.-S. Chen The compact disk ROM: How it works: An offshoot of the compact digital audio disk, this multimegabyte storage technique is revolutionizing database technology , 1986, IEEE Spectrum.

[11]  K H Brenner New implementation of symbolic substitution logic. , 1986, Applied optics.

[12]  D Casasent,et al.  Acoustooptic matched filter correlator. , 1982, Applied optics.

[13]  David Casasent,et al.  Knowledge In Optical Symbolic Pattern Recognition Processors , 1987 .

[14]  H. M. Gibbs,et al.  Nonlinear Etalons And Optical Computing , 1987, Other Conferences.

[15]  G R Knight,et al.  Page-oriented associative holographic memory. , 1974, Applied optics.

[16]  P. Bruce Berra,et al.  An optical system for full text search , 1989, SIGIR '89.

[17]  Roger L. Haskin,et al.  Operational characteristics of a harware-based pattern matcher , 1983, TODS.

[18]  Stavros Christodoulakis,et al.  Analysis of retrieval performance for records and objects using optical disk technology , 1987, TODS.

[19]  H. Gibbs Optical Bistability Controlling Light With Light , 1985 .

[20]  K. Schouhamer Immink,et al.  Principles of Optical Disc Systems , 1985 .

[21]  D Casasent Acoustooptic transducers in iterative optical vector-matrix processors. , 1982, Applied optics.

[22]  Guilfoyle Ps,et al.  Combinatorial logic based digital optical computing architectures , 1988 .

[23]  R. Ian MacDonald Terminology for photonic matrix switches , 1988, IEEE J. Sel. Areas Commun..

[24]  M. C. Rushford,et al.  Use of a single nonlinear Fabry-Perot étalon as optical logic gates , 1984 .

[25]  Howard M. Smith Principles of Holography , 1969 .

[26]  H. J. Caulfield,et al.  The applications of holography , 1970 .

[27]  Howard M. Smith Holographic Recording Materials , 1977 .

[28]  Karl-Heinz Brenner,et al.  Digital optical computing with symbolic substitution. , 1986 .

[29]  Kevin P. McAuliffe,et al.  The IBM Research Parallel Processor Prototype (RP3): Introduction and Architecture , 1985, ICPP.

[30]  G. Zorpette,et al.  Personal computers: Lessons learned , 1986, IEEE Spectrum.

[31]  H. J. Caulfield Optical inference machines , 1985 .

[32]  P.A. Dwyer,et al.  Some experiences with a distributed database testbed system , 1987, Proceedings of the IEEE.

[33]  Q W Song,et al.  Generalized perfect shuffle using optical spatial filtering. , 1988, Applied optics.

[34]  Demetri Psaltis,et al.  Two-Dimensional Magneto-Optic Spatial Light Modulator For Signal Processing , 1983 .

[35]  T Sato,et al.  Organic dye materials for optical recording media. , 1986, Applied optics.

[36]  H J Caulfield,et al.  Optical expert systems. , 1987, Applied optics.

[37]  A W Lohmann,et al.  Spatial filtering logic based on polarization. , 1987, Applied optics.

[38]  H. Scott Hinton,et al.  Architectural considerations for photonic switching networks , 1988, IEEE J. Sel. Areas Commun..

[39]  Nasser Peyghambarian,et al.  Fabrication of arrays of GaAs optical bistable devices , 1986 .

[40]  W.T. Rhodes,et al.  Acoustooptic algebraic processing architectures , 1984, Proceedings of the IEEE.

[41]  Cauligi S. Raghavendra,et al.  Optical Crossbar Networks , 1987, Computer.

[42]  T. E. Bell,et al.  Optical computing: A field in flux , 1986, IEEE Spectrum.

[43]  J. H. English,et al.  Array of optically bistable integrated self-electrooptic effect devices , 1986 .

[44]  W Stork,et al.  Optical perfect shuffle. , 1986, Applied optics.

[45]  J F Walkup,et al.  Optical techniques for real-time binary multiplication. , 1986, Applied optics.

[46]  Mohammad R. Taghizadeh,et al.  Room temperature, visible wavelength optical bistability in ZnSe interference filters , 1984 .

[47]  P. Bruce Berra,et al.  Optical Techniques and Data/Knowledge Base Machines , 1987, Computer.

[48]  C Warde,et al.  Hybrid optical inference machines: architectural considerations. , 1986, Applied optics.

[49]  Roger L. Haskin,et al.  Architecture and Operation of a Large, Full-Text Information-Retrieval System , 1983, Advanced Database Machine Architecture.

[50]  M Mori,et al.  Magnetooptic erasable disk memory with two optical heads. , 1986, Applied optics.

[51]  Salvatore J. Stolfo,et al.  DADO: A Parallel Processor for Expert Systems , 1984 .

[52]  S H Lee,et al.  Comparison between optical and electrical interconnects based on power and speed considerations. , 1988, Applied optics.

[53]  Paul R. Prucnal,et al.  Self-Routing Photonic Switching Demonstration With Optical Control , 1987 .

[54]  A.A. Sawchuk,et al.  Digital optical computing , 1984, Proceedings of the IEEE.

[55]  S. H. Lee,et al.  Optical Information Processing: Fundamentals , 1981 .

[56]  R.P. Freese Optical disks become erasable , 1988, IEEE Spectrum.

[57]  H J Caulfield,et al.  Optical database/knowledgebase machines. , 1990, Applied optics.

[58]  Hyatt M. Gibbs,et al.  Optical Bistability, Logic Gating, and Waveguide Operation in Semiconductor Etalons , 1987, Computer.

[59]  G. Knight,et al.  Interface devices and memory materials , 1981 .

[60]  Joseph A. Calabria,et al.  A High-Speed, Large-Capacity, Jukebox "Optical Disk System" , 1985, Computer.

[61]  Nobuo Nishida,et al.  A New Associative Memory System Utilizing Holography , 1970, IEEE Transactions on Computers.

[62]  Kurt A. Rubin,et al.  New phase change material for optical recording with short erase time , 1986 .

[63]  K.H. Kim,et al.  Testbed-based validation of design techniques for reliable distributed real-time systems , 1987, Proceedings of the IEEE.

[64]  Joseph W. Goodman,et al.  Fan-in and Fan-out with Optical Interconnections , 1985 .

[65]  H. J. Caulfield,et al.  Optical implementation of systolic array processing , 1981 .

[66]  Lars Thylén,et al.  Strictly nonblocking 8×8 integrated optical switch matrix , 1986 .

[67]  Hidehiko Tanaka,et al.  A Parallel Inference Machine , 1986, Computer.

[68]  David A. B. Miller,et al.  Quantum Wells For Optical Information Processing , 1987 .

[69]  Q W Song,et al.  Implementation of Boolean logic gates using a microchannel spatial light modulator with liquid-crystal televisions. , 1987, Optics letters.

[70]  D. Gabor Associative holographic memories , 1969 .

[71]  C. Warde 7.2 – Spatial Light Modulators: Applications and Functional Capabilities , 1987 .

[72]  David J. DeWitt,et al.  GAMMA - A High Performance Dataflow Database Machine , 1986, VLDB.

[73]  J. Goodman,et al.  Fiber-Optic Crossbar Switch With Broadcast Capability , 1988 .

[74]  A. Himeno,et al.  4 × 4 optical-gate matrix switch , 1985, Journal of Lightwave Technology.

[75]  H. J. Caulfield,et al.  Eigenvector determination by noncoherent optical methods. , 1981, Applied optics.

[76]  D Psaltis,et al.  Real-time programmable acoustooptic synthetic aperture radar processor. , 1988, Applied optics.

[77]  Leo M. F. Chirovsky,et al.  The Symmetric Self Electro-optic Effect Device , 1987 .

[78]  L. W. Tucker,et al.  Architecture and applications of the Connection Machine , 1988, Computer.

[79]  Norman S. Matloff,et al.  Optimul: An optional interconnect for multiprocessor systems , 1988, ICS '88.

[80]  K. Johnson,et al.  Optical Computing And Image Processing With Ferroelectric Liquid Crystals , 1987 .

[81]  Akira Suzuki,et al.  An experiment on high-speed optical time-division switching , 1986 .

[82]  Demetri Psaltis,et al.  Optical Neural Computers , 1987, Topical Meeting on Optical Computing.

[83]  J. Goodman,et al.  Neural networks for computation: number representations and programming complexity. , 1986, Applied optics.