Large-Eddy Simulations of a Drizzling, Stratocumulus-Topped Marine Boundary Layer

Cloud water sedimentation and drizzle in a stratocumulus-topped boundary layer are the focus of an intercomparison of large-eddy simulations. The context is an idealized case study of nocturnal stratocumulus under a dry inversion, with embedded pockets of heavily drizzling open cellular convection. Results from 11 groups are used. Two models resolve the size distributions of cloud particles, and the others parameterize cloud water sedimentation and drizzle. For the ensemble of simulations with drizzle and cloud water sedimentation, the mean liquid water path (LWP) is remarkably steady and consistent with the measurements, the mean entrainment rate is at the low end of the measured range, and the ensemble-average maximum vertical wind variance is roughly half that measured. On average, precipitation at the surface and at cloud base is smaller, and the rate of precipitation evaporation greater, than measured. Including drizzle in the simulations reduces convective intensity, increases boundary layer stratification, and decreases LWP for nearly all models. Including cloud water sedimentation substantially decreases entrainment, decreases convective intensity, and increases LWP for most models. In nearly all cases, LWP responds more strongly to cloud water sedimentation than to drizzle. The omission of cloud water sedimentation in simulations is strongly discouraged, regardless of whether or not precipitation is present below cloud base.

[1]  Greg Michael McFarquhar,et al.  Impact of small ice crystal assumptions on ice sedimentation rates in cirrus clouds and GCM simulations , 2008 .

[2]  S. Weinbrecht,et al.  Stochastic Backscatter for Cloud-Resolving Models. Part I: Implementation and Testing in a Dry Convective Boundary Layer , 2008 .

[3]  Sungsu Park,et al.  A single-column model intercomparison of a heavily drizzling stratocumulus-topped boundary layer , 2007 .

[4]  S. Nicholls,et al.  A Study of the Diurnal Variation of Stratocumulus Using A Multiple Mixed Layer Model , 2007 .

[5]  R. Wood,et al.  Cancellation of Aerosol Indirect Effects in Marine Stratocumulus through Cloud Thinning , 2007 .

[6]  Ben S Cooper,et al.  Confronting models with data. , 2007, The Journal of hospital infection.

[7]  C. Bretherton,et al.  Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo , 2007 .

[8]  V. Larson,et al.  An Analytic Longwave Radiation Formula for Liquid Layer Clouds , 2007 .

[9]  M. Petters,et al.  Supersaturation in the Wyoming CCN Instrument , 2006 .

[10]  P. Rasch,et al.  Representation of Clouds and Precipitation Processes in the Community Atmosphere Model Version 3 (CAM3) , 2006 .

[11]  K. D. Beheng,et al.  A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description , 2006 .

[12]  B. Stevens,et al.  Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical Pacific marine boundary layer , 2006 .

[13]  Bjorn Stevens,et al.  Observations of the Structure of Heavily Precipitating Marine Stratocumulus. , 2005 .

[14]  S. Bony,et al.  Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models , 2005 .

[15]  R. Wood,et al.  Drizzle in Stratiform Boundary Layer Clouds. Part I: Vertical and Horizontal Structure , 2005 .

[16]  J. Golaz,et al.  Coamps®-Les: Model Evaluation and Analysis of Second-and Third-Moment Vertical Velocity Budgets , 2005 .

[17]  Robert Wood,et al.  Drizzle in Stratiform Boundary Layer Clouds. Part II: Microphysical Aspects. , 2005 .

[18]  B. Stevens,et al.  Observations of Entrainment in Eastern Pacific Marine Stratocumulus Using Three Conserved Scalars , 2005 .

[19]  P. Daum,et al.  Size truncation effect, threshold behavior, and a new type of autoconversion parameterization , 2005 .

[20]  C. Bretherton,et al.  Evaluation of Large-Eddy Simulations via Observations of Nocturnal Marine Stratocumulus , 2005 .

[21]  B. Stevens,et al.  Observations of Drizzle in Nocturnal Marine Stratocumulus , 2005 .

[22]  M. Kirkpatrick,et al.  The impact of humidity above stratiform clouds on indirect aerosol climate forcing , 2004, Nature.

[23]  C. Bretherton,et al.  Reflectivity and rain rate in and below drizzling stratocumulus , 2004 .

[24]  C. Bretherton,et al.  POCKETS OF OPEN CELLS AND DRIZZLE IN MARINE STRATOCUMULUS , 2004 .

[25]  Yangang Liu,et al.  Parameterization of the Autoconversion Process. Part I: Analytical Formulation of the Kessler-Type Parameterizations , 2004 .

[26]  D. Lilly,et al.  On entrainment rates in nocturnal marine stratocumulus , 2003 .

[27]  Hanna Pawlowska,et al.  An observational study of drizzle formation in stratocumulus clouds for general circulation model (GCM) parameterizations , 2003 .

[28]  D. Lilly,et al.  Dynamics and chemistry of marine stratocumulus - DYCOMS II , 2003 .

[29]  J. Curry,et al.  Confronting Models with Data: The Gewex Cloud Systems Study , 2003 .

[30]  W. Cotton,et al.  Simulations of aerosol-cloud-dynamical feedbacks resulting from entrainment of aerosol into the marine boundary layer during the Atlantic Stratocumulus Transition Experiment , 2002 .

[31]  W. S. Lewellen,et al.  Entrainment and Decoupling Relations for Cloudy Boundary Layers , 2002 .

[32]  J. Coakley,et al.  Limits to the Aerosol Indirect Radiative Effect Derived from Observations of Ship Tracks , 2002 .

[33]  K. D. Beheng,et al.  A double-moment parameterization for simulating autoconversion, accretion and selfcollection , 2001 .

[34]  M. Zulauf MODELING THE EFFECTS OF BOUNDARY LAYER CIRCULATIONS GENERATED BY CUMULUS CONVECTION AND LEADS ON LAR , 2001 .

[35]  Jonathan P. Taylor,et al.  Effects of Aerosols on Cloud Albedo: Evaluation of Twomey's Parameterization of Cloud Susceptibility Using Measurements of Ship Tracks. , 2000 .

[36]  B. Stevens,et al.  Cloud transitions and decoupling in shear‐free stratocumulus‐topped boundary layers , 2000 .

[37]  Michael D. King,et al.  The Role of Background Cloud Microphysics in the Radiative Formation of Ship Tracks , 2000 .

[38]  M. Khairoutdinov,et al.  A New Cloud Physics Parameterization in a Large-Eddy Simulation Model of Marine Stratocumulus , 2000 .

[39]  B. Stevens,et al.  Large-Eddy Simulations of Strongly Precipitating, Shallow, Stratocumulus-Topped Boundary Layers , 1998 .

[40]  Louis J. Wicker,et al.  A Time-Splitting Scheme for the Elastic Equations Incorporating Second-Order Runge–Kutta Time Differencing , 1998 .

[41]  C. Bretherton,et al.  Moisture Transport, Lower-Tropospheric Stability, and Decoupling of Cloud-Topped Boundary Layers , 1997 .

[42]  D. Stevens,et al.  A Forward-in-Time Advection Scheme and Adaptive Multilevel Flow Solver for Nearly Incompressible Atmospheric Flow , 1996 .

[43]  B. Stevens,et al.  Elements of the microphysical structure of numerically simulated nonprecipitating stratocumulus , 1996 .

[44]  Q. Fu,et al.  Numerical simulation of the stratus-to-cumulus transition in the subtropical marine boundary layer. Part II: boundary-layer circulation , 1995 .

[45]  Q. Fu,et al.  Numerical simulation of the stratus to cumulus transition in the subtropical marine boundary layer , 1995 .

[46]  Q. Fu,et al.  Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection , 1995 .

[47]  R. Pincus,et al.  Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer , 1994, Nature.

[48]  D. W. Johnson,et al.  The Measurement and Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds , 1994 .

[49]  P. Hobbs,et al.  Dissipation of Marine Stratiform Clouds and Collapse of the Marine Boundary Layer Due to the Depletion of Cloud Condensation Nuclei by Clouds , 1993, Science.

[50]  S. Klein,et al.  The Seasonal Cycle of Low Stratiform Clouds , 1993 .

[51]  D. Thomson,et al.  Stochastic backscatter in large-eddy simulations of boundary layers , 1992, Journal of Fluid Mechanics.

[52]  D. Lenschow,et al.  Stratiform cloud formation in the marine boundary layer , 1991 .

[53]  Christof Lüpkes Untersuchungen zur Parametrisierung von Koagulationsprozessen niederschlagsbildender Tropfen , 1991 .

[54]  R. Rotunno,et al.  Vertical-Velocity Skewness in the Buoyancy-Driven Boundary Layer , 1990 .

[55]  Zev Levin,et al.  The Evolution of Raindrop Spectra. Part II: Collisional Collection/Breakup and Evaporation in a Rainshaft , 1989 .

[56]  N. Chaumerliac,et al.  Effects of Different Rain Parameterizations on the Simulation of Mesoscale Orographic Precipitation , 1989 .

[57]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[58]  G. Feingold,et al.  An Efficient Numerical Solution to the Stochastic Collection Equation , 1987 .

[59]  K. Droegemeier,et al.  Numerical Simulation of Thunderstorm Outflow Dynamics. Part I: Outflow Sensitivity Experiments and Turbulence Dynamics , 1987 .

[60]  C. Moeng Large-Eddy Simulation of a Stratus-Topped Boundary Layer. Part I: Structure and Budgets , 1986 .

[61]  S. Nicholls,et al.  An observational study of the structure of stratiform cloud sheets: Part I. Structure , 1986 .

[62]  P. Bougeault The diurnal cycle of the marine stratocumulus layer: a higher-order model study , 1985 .

[63]  S. Nicholls The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model , 1984 .

[64]  Stephen J. Lord,et al.  Role of a Parameterized Ice-Phase Microphysics in an Axisymmetric, Nonhydrostatic Tropical Cyclone Model , 1984 .

[65]  D. Randall Stratocumulus cloud deepening through entrainment , 1984 .

[66]  K. Beard,et al.  Collection and coalescence efficiencies for accretion , 1984 .

[67]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[68]  Donald H. Lenschow,et al.  Marine Stratocumulus Layers. Part II: Turbulence Budgets , 1982 .

[69]  W. Hall,et al.  A Detailed Microphysical Model Within a Two-Dimensional Dynamic Framework: Model Description and Preliminary Results , 1980 .

[70]  J. Deardorff Stratocumulus-capped mixed layers derived from a three-dimensional model , 1980 .

[71]  J. Deardorff Cloud Top Entrainment Instability , 1980 .

[72]  D. Randall,et al.  Conditional instability of the first kind upside-down. [in stratocumulus clouds] , 1980 .

[73]  L. R. Koenig,et al.  A Short Course in Cloud Physics , 1979 .

[74]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[75]  J. Klemp,et al.  The Simulation of Three-Dimensional Convective Storm Dynamics , 1978 .

[76]  S. Zalesak,et al.  Fully Multidimensional Flux-Corrected Transport. , 1978 .

[77]  K. Beard Terminal Velocity and Shape of Cloud and Precipitation Drops Aloft , 1976 .

[78]  R. Rogers,et al.  A short course in cloud physics , 1976 .

[79]  S. Twomey Pollution and the Planetary Albedo , 1974 .