Parallel stochastic methods for PDE based grid generation
暂无分享,去创建一个
[1] B. Øksendal. Stochastic differential equations : an introduction with applications , 1987 .
[2] D. Keyes,et al. Non‐linear additive Schwarz preconditioners and application in computational fluid dynamics , 2002 .
[3] Jitendra Malik,et al. Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[4] A. Dvinsky. Adaptive grid generation from harmonic maps on Reimannian manifolds , 1991 .
[5] Chris J. Budd,et al. Monge-Ampére based moving mesh methods for numerical weather prediction, with applications to the Eady problem , 2013, J. Comput. Phys..
[6] T. Tang,et al. Simulating three-dimensional free surface viscoelastic flows using moving finite difference schemes , 2010 .
[7] A. Arnold,et al. Harvesting graphics power for MD simulations , 2007, 0709.3225.
[8] Martin J. Gander,et al. Domain Decomposition Approaches for Mesh Generation via the Equidistribution Principle , 2012, SIAM J. Numer. Anal..
[9] Mark S. Shephard,et al. Automatic three-dimensional mesh generation by the finite octree technique , 1984 .
[10] Shawn W. Walker,et al. Tetrahedralization of Isosurfaces with Guaranteed-Quality by Edge Rearrangement (TIGER) , 2012, SIAM J. Sci. Comput..
[11] P. Kloeden,et al. Numerical Solution of Stochastic Differential Equations , 1992 .
[12] Grant D. Lythe,et al. Exponential Timestepping with Boundary Test for Stochastic Differential Equations , 2003, SIAM J. Sci. Comput..
[13] Ronald D. Haynes,et al. Generating Equidistributed Meshes in 2D via Domain Decomposition , 2013, ArXiv.
[14] Xiaoyong Zhan,et al. Adaptive Moving Mesh Modeling for Two Dimensional Groundwater Flow and Transport Weizhang Huang and , 2004 .
[15] A. M. Winslow. Adaptive-mesh zoning by the equipotential method , 1981 .
[16] Ioannis Karatzas,et al. Brownian Motion and Stochastic Calculus , 1987 .
[17] Xiao-Chuan Cai,et al. One‐level Newton–Krylov–Schwarz algorithm for unsteady non‐linear radiation diffusion problem , 2004, Numer. Linear Algebra Appl..
[18] David E. Keyes,et al. Nonlinearly Preconditioned Inexact Newton Algorithms , 2002, SIAM J. Sci. Comput..
[19] Weizhang Huang,et al. A Simple Adaptive Grid Method in Two Dimensions , 1994, SIAM J. Sci. Comput..
[20] YIRANG YUAN,et al. THE CHARACTERISTIC FINITE ELEMENT ALTERNATING-DIRECTION METHOD WITH MOVING MESHES FOR THE TRANSIENT BEHAVIOR OF A SEMICONDUCTOR DEVICE , 2011 .
[21] A. M. Winslow. Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .
[22] Bharat K. Soni,et al. Mesh Generation , 2020, Handbook of Computational Geometry.
[23] Juan A. Acebrón,et al. A new parallel solver suited for arbitrary semilinear parabolic partial differential equations based on generalized random trees , 2011, J. Comput. Phys..
[24] Huazhong Tang,et al. An adaptive moving mesh method for two-dimensional relativistic magnetohydrodynamics , 2012 .
[25] E. Gobet. Weak approximation of killed diffusion using Euler schemes , 2000 .
[26] 陈荣亮. Parallel one-shot Lagrange-Newton-Krylov-Schwarz algorithms for shape optimization of steady incompressible flows , 2012 .
[27] Weizhang Huang,et al. Metric tensors for anisotropic mesh generation , 2005 .
[28] Piero Lanucara,et al. Domain Decomposition Solution of Elliptic Boundary-Value Problems via Monte Carlo and Quasi-Monte Carlo Methods , 2005, SIAM J. Sci. Comput..
[29] Jonathan Richard Shewchuk,et al. Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..
[30] Dale A. Anderson. Equidistribution schemes, poisson generators, and adaptive grids , 1987 .
[31] Joe F. Thompson,et al. Numerical grid generation: Foundations and applications , 1985 .
[32] Juan A. Acebrón,et al. Domain decomposition solution of nonlinear two-dimensional parabolic problems by random trees , 2009, J. Comput. Phys..
[33] Joe F. Thompson,et al. Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies , 1974 .
[34] Mark S. Shephard,et al. Automatic three‐dimensional mesh generation by the finite octree technique , 1984 .
[35] Ronald Fedkiw,et al. Adaptive physics based tetrahedral mesh generation using level sets , 2005, Engineering with Computers.
[36] Xiao-Chuan Cai,et al. A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier-Stokes equations , 2005 .
[37] Robert D. Russell,et al. Adaptive Moving Mesh Methods , 2010 .
[38] Wolfgang Paul,et al. GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model , 2009, J. Comput. Phys..
[39] Juan A. Acebrón,et al. Efficient Parallel Solution of Nonlinear Parabolic Partial Differential Equations by a Probabilistic Domain Decomposition , 2010, J. Sci. Comput..
[40] William H. Press,et al. Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .
[41] Weizhang Huang,et al. Variational mesh adaptation: isotropy and equidistribution , 2001 .
[42] M. Yvinec,et al. Variational tetrahedral meshing , 2005, SIGGRAPH 2005.