Parallel stochastic methods for PDE based grid generation

Abstract The efficient generation of meshes is an important step in the numerical solution of various problems in physics and engineering. We are interested in situations where global mesh quality and tight coupling to the physical solution is important. We consider elliptic PDE based mesh generation and present a method for the construction of adaptive meshes in two spatial dimensions using domain decomposition that is suitable for an implementation on parallel computing architectures. The method uses the stochastic representation of the exact solution of a linear mesh generator of Winslow type to find the points of the adaptive mesh along the subdomain interfaces. The meshes over the single subdomains can then be obtained completely independently of each other using the probabilistically computed solutions along the interfaces as boundary conditions for the linear mesh generator. Further to the previously acknowledged performance characteristics, we demonstrate how the stochastic domain decomposition approach is particularly suited to the problem of grid generation — generating quality meshes efficiently. In addition we show further improvements are possible using interpolation of the subdomain interfaces and smoothing of mesh candidates. An optimal placement strategy is introduced to automatically choose the number and placement of points along the interface using the mesh density function. Various examples of meshes constructed using this stochastic–deterministic domain decomposition technique are shown and compared to the respective single domain solutions using a representative mesh quality measure. A brief performance study is included to show the viability of the stochastic domain decomposition approach and to illustrate the effect of algorithmic choices on the solver’s efficiency.

[1]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[2]  D. Keyes,et al.  Non‐linear additive Schwarz preconditioners and application in computational fluid dynamics , 2002 .

[3]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  A. Dvinsky Adaptive grid generation from harmonic maps on Reimannian manifolds , 1991 .

[5]  Chris J. Budd,et al.  Monge-Ampére based moving mesh methods for numerical weather prediction, with applications to the Eady problem , 2013, J. Comput. Phys..

[6]  T. Tang,et al.  Simulating three-dimensional free surface viscoelastic flows using moving finite difference schemes , 2010 .

[7]  A. Arnold,et al.  Harvesting graphics power for MD simulations , 2007, 0709.3225.

[8]  Martin J. Gander,et al.  Domain Decomposition Approaches for Mesh Generation via the Equidistribution Principle , 2012, SIAM J. Numer. Anal..

[9]  Mark S. Shephard,et al.  Automatic three-dimensional mesh generation by the finite octree technique , 1984 .

[10]  Shawn W. Walker,et al.  Tetrahedralization of Isosurfaces with Guaranteed-Quality by Edge Rearrangement (TIGER) , 2012, SIAM J. Sci. Comput..

[11]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[12]  Grant D. Lythe,et al.  Exponential Timestepping with Boundary Test for Stochastic Differential Equations , 2003, SIAM J. Sci. Comput..

[13]  Ronald D. Haynes,et al.  Generating Equidistributed Meshes in 2D via Domain Decomposition , 2013, ArXiv.

[14]  Xiaoyong Zhan,et al.  Adaptive Moving Mesh Modeling for Two Dimensional Groundwater Flow and Transport Weizhang Huang and , 2004 .

[15]  A. M. Winslow Adaptive-mesh zoning by the equipotential method , 1981 .

[16]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[17]  Xiao-Chuan Cai,et al.  One‐level Newton–Krylov–Schwarz algorithm for unsteady non‐linear radiation diffusion problem , 2004, Numer. Linear Algebra Appl..

[18]  David E. Keyes,et al.  Nonlinearly Preconditioned Inexact Newton Algorithms , 2002, SIAM J. Sci. Comput..

[19]  Weizhang Huang,et al.  A Simple Adaptive Grid Method in Two Dimensions , 1994, SIAM J. Sci. Comput..

[20]  YIRANG YUAN,et al.  THE CHARACTERISTIC FINITE ELEMENT ALTERNATING-DIRECTION METHOD WITH MOVING MESHES FOR THE TRANSIENT BEHAVIOR OF A SEMICONDUCTOR DEVICE , 2011 .

[21]  A. M. Winslow Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .

[22]  Bharat K. Soni,et al.  Mesh Generation , 2020, Handbook of Computational Geometry.

[23]  Juan A. Acebrón,et al.  A new parallel solver suited for arbitrary semilinear parabolic partial differential equations based on generalized random trees , 2011, J. Comput. Phys..

[24]  Huazhong Tang,et al.  An adaptive moving mesh method for two-dimensional relativistic magnetohydrodynamics , 2012 .

[25]  E. Gobet Weak approximation of killed diffusion using Euler schemes , 2000 .

[26]  陈荣亮 Parallel one-shot Lagrange-Newton-Krylov-Schwarz algorithms for shape optimization of steady incompressible flows , 2012 .

[27]  Weizhang Huang,et al.  Metric tensors for anisotropic mesh generation , 2005 .

[28]  Piero Lanucara,et al.  Domain Decomposition Solution of Elliptic Boundary-Value Problems via Monte Carlo and Quasi-Monte Carlo Methods , 2005, SIAM J. Sci. Comput..

[29]  Jonathan Richard Shewchuk,et al.  Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..

[30]  Dale A. Anderson Equidistribution schemes, poisson generators, and adaptive grids , 1987 .

[31]  Joe F. Thompson,et al.  Numerical grid generation: Foundations and applications , 1985 .

[32]  Juan A. Acebrón,et al.  Domain decomposition solution of nonlinear two-dimensional parabolic problems by random trees , 2009, J. Comput. Phys..

[33]  Joe F. Thompson,et al.  Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies , 1974 .

[34]  Mark S. Shephard,et al.  Automatic three‐dimensional mesh generation by the finite octree technique , 1984 .

[35]  Ronald Fedkiw,et al.  Adaptive physics based tetrahedral mesh generation using level sets , 2005, Engineering with Computers.

[36]  Xiao-Chuan Cai,et al.  A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier-Stokes equations , 2005 .

[37]  Robert D. Russell,et al.  Adaptive Moving Mesh Methods , 2010 .

[38]  Wolfgang Paul,et al.  GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model , 2009, J. Comput. Phys..

[39]  Juan A. Acebrón,et al.  Efficient Parallel Solution of Nonlinear Parabolic Partial Differential Equations by a Probabilistic Domain Decomposition , 2010, J. Sci. Comput..

[40]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[41]  Weizhang Huang,et al.  Variational mesh adaptation: isotropy and equidistribution , 2001 .

[42]  M. Yvinec,et al.  Variational tetrahedral meshing , 2005, SIGGRAPH 2005.