Iterated extended Kalman filter method for time‐lapse seismic full‐waveform inversion

Time-lapse seismic data is useful for identifying fluid movement and pressure and saturation changes in a petroleum reservoir and for monitoring of CO2 injection. The focus of this paper is estimation of time-lapse changes with uncertainty quantification using full-waveform inversion. The purpose of also estimating the uncertainty in the inverted parameters is to be able to use the inverted seismic data quantitatively for updating reservoir models with ensemble-based methods. We perform Bayesian inversion of seismic waveform data in the frequency domain by combining an iterated extended Kalman filter with an explicit representation of the sensitivity matrix in terms of Green functions (acoustic approximation). Using this method, we test different strategies for inversion of the time-lapse seismic data with uncertainty. We compare the results from a sequential strategy (making a prior from the monitor survey using the inverted baseline survey) with a double difference strategy (inverting the difference between the monitor and baseline data). We apply the methods to a subset of the Marmousi2 P-velocity model. Both strategies performed well and relatively good estimates of the monitor velocities and the time-lapse differences were obtained. For the estimated time-lapse differences, the double difference strategy gave the lowest errors.

[1]  M. Jakobsen,et al.  Discriminating time-lapse saturation and pressure changes in CO2 monitoring from seismic waveform and CSEM data using ensemble-based Bayesian inversion , 2016 .

[2]  Sam Kaplan,et al.  Low frequency full waveform seismic inversion within a tree based Bayesian framework , 2018 .

[3]  M. Aleardi,et al.  1D elastic full‐waveform inversion and uncertainty estimation by means of a hybrid genetic algorithm–Gibbs sampler approach , 2017 .

[4]  D. Oliver,et al.  Recent progress on reservoir history matching: a review , 2011 .

[5]  James Martin,et al.  A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion , 2013, SIAM J. Sci. Comput..

[6]  B. Biondi,et al.  Robust Simultaneous Time-lapse Full-waveform Inversion with Total-variation Regularization of Model Difference , 2015 .

[7]  Espen Birger,et al.  Time-lapse Full Waveform Inversion: Synthetic and Real Data Examples , 2013 .

[8]  Daniel Axehill,et al.  Extended Kalman filter modifications based on an optimization view point , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[9]  B. Biondi,et al.  Joint full-waveform inversion of time-lapse seismic data sets , 2014 .

[10]  A. Sajeva,et al.  Genetic algorithm full-waveform inversion: uncertainty estimation and validation of the results , 2017 .

[11]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[12]  Ludovic Métivier,et al.  An ensemble-transform Kalman filter: Full-waveform inversion scheme for uncertainty estimation , 2017 .

[13]  Partha S. Routh,et al.  Full Wavefield Inversion of Time-Lapse Data for Improved Imaging and Reservoir Characterization , 2012 .

[14]  A. Ratcliffe,et al.  Time-lapse full-waveform inversion as a reservoir-monitoring tool — A North Sea case study , 2016 .

[15]  J. Virieux,et al.  Time‐lapse seismic imaging using regularized full‐waveform inversion with a prior model: which strategy? , 2015 .

[16]  A. Malcolm,et al.  Double-difference waveform inversion: Feasibility and robustness study with pressure data , 2015 .

[17]  Kjersti Solberg Eikrem,et al.  Bayesian estimation of reservoir properties—effects of uncertainty quantification of 4D seismic data , 2016, Computational Geosciences.

[18]  James Martin,et al.  A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..

[19]  Tariq Alkhalifah,et al.  Multiparameter Elastic Full Waveform Inversion With Facies Constraints , 2017 .

[20]  T. Mannseth,et al.  Parameter sampling capabilities of sequential and simultaneous data assimilation: II. Statistical analysis of numerical results , 2014 .

[21]  A numerical study of 3D elastic time-lapse full-waveform inversion using multicomponent seismic data , 2015 .

[22]  J. Virieux,et al.  An introduction to full waveform inversion , 2016 .

[23]  T. Mannseth,et al.  Parameter sampling capabilities of sequential and simultaneous data assimilation: I. Analytical comparison , 2014 .

[24]  P. Eliasson,et al.  Uncertainty Quantification in Waveform-based Imaging Methods - a Sleipner CO2 Monitoring Study , 2017 .

[25]  S. Hanasoge Full Waveform Inversion , 2015 .

[26]  Eric Darve,et al.  The compressed state Kalman filter for nonlinear state estimation: Application to large‐scale reservoir monitoring , 2015 .

[27]  Huseyin Denli,et al.  Double-Difference Elastic Waveform Tomography In the Time Domain , 2009 .

[28]  René-Édouard Plessix,et al.  Some 3D applications of full waveform inversion , 2010 .

[29]  Felix J. Herrmann,et al.  Fast Uncertainty Quantification for 2D Full-waveform Inversion with Randomized Source Subsampling , 2014 .

[30]  A. Buland,et al.  Bayesian linearized AVO inversion , 2003 .

[31]  Bjørn Ursin,et al.  Full waveform inversion in the frequency domain using direct iterative T-matrix methods , 2015 .

[32]  E. Raknes,et al.  Strategies for Elastic Full Waveform Inversion , 2014 .

[33]  Mrinal K. Sen,et al.  2D Full-Waveform Inversion and Uncertainty Estimation using the Reversible Jump Hamiltonian Monte Carlo , 2017 .

[34]  Dean S. Oliver,et al.  THE ENSEMBLE KALMAN FILTER IN RESERVOIR ENGINEERING-A REVIEW , 2009 .

[35]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[36]  Morten Jakobsen,et al.  T-matrix approach to seismic forward modelling in the acoustic approximation , 2012, Studia Geophysica et Geodaetica.

[37]  Gary Martin,et al.  Marmousi2 An elastic upgrade for Marmousi , 2006 .

[38]  Romain Brossier,et al.  Time-lapse imaging using regularized FWI: a robustness study , 2012 .

[39]  Eiichi Asakawa,et al.  Differential waveform tomography for time-lapse crosswell seismic data with application to gas hy- drate production monitoring , 2004 .

[40]  O. Ghattas,et al.  A Bayesian approach to estimate uncertainty for full-waveform inversion using a priori information from depth migration , 2016 .

[41]  Leandro Passos de Figueiredo,et al.  Bayesian seismic inversion based on rock-physics prior modeling for the joint estimation of acoustic impedance, porosity and lithofacies , 2017, J. Comput. Phys..

[42]  Multi-model full-waveform inversion , 2014, 1410.6997.

[43]  Alexandre Boucher,et al.  Applied Geostatistics with SGeMS: Preface , 2009 .

[44]  F. W. Cathey,et al.  The iterated Kalman filter update as a Gauss-Newton method , 1993, IEEE Trans. Autom. Control..

[45]  Mrinal K. Sen,et al.  Frequency-domain full waveform inversion with a scattering-integral approach and its sensitivity analysis , 2013 .

[46]  W. Hackbusch,et al.  Introduction to Hierarchical Matrices with Applications , 2003 .