Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization
暂无分享,去创建一个
Lieven De Lathauwer | Laurent Sorber | Marc Van Barel | L. Lathauwer | M. Barel | Laurent Sorber | L. D. Lathauwer
[1] Lieven De Lathauwer,et al. Decompositions of a Higher-Order Tensor in Block Terms - Part II: Definitions and Uniqueness , 2008, SIAM J. Matrix Anal. Appl..
[2] Richard H. Byrd,et al. Approximate solution of the trust region problem by minimization over two-dimensional subspaces , 1988, Math. Program..
[3] Chikio Hayashi,et al. A NEW ALGORITHM TO SOLVE PARAFAC-MODEL , 1982 .
[4] P. Paatero. Construction and analysis of degenerate PARAFAC models , 2000 .
[5] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[6] Lieven De Lathauwer,et al. On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part I: Basic Results and Uniqueness of One Factor Matrix , 2013, SIAM J. Matrix Anal. Appl..
[7] F. L. Hitchcock. The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .
[8] Lieven De Lathauwer,et al. On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part II: Uniqueness of the Overall Decomposition , 2013, SIAM J. Matrix Anal. Appl..
[9] Mike E. Davies,et al. Latent Variable Analysis and Signal Separation , 2010 .
[10] Rasmus Bro,et al. Multi-way Analysis with Applications in the Chemical Sciences , 2004 .
[11] P. Paatero. A weighted non-negative least squares algorithm for three-way ‘PARAFAC’ factor analysis , 1997 .
[12] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[13] J. Kruskal,et al. How 3-MFA data can cause degenerate parafac solutions, among other relationships , 1989 .
[14] R. Remmert,et al. Theory of Complex Functions , 1990 .
[15] N.D. Sidiropoulos,et al. Blind multiuser detection in W-CDMA systems with large delay spread , 2001, IEEE Signal Processing Letters.
[16] Lieven De Lathauwer,et al. A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..
[17] Lieven De Lathauwer,et al. An enhanced line search scheme for complex-valued tensor decompositions. Application in DS-CDMA , 2008, Signal Process..
[18] Lieven De Lathauwer,et al. Blind Separation of Exponential Polynomials and the Decomposition of a Tensor in Rank-(Lr, Lr, 1) Terms , 2011, SIAM J. Matrix Anal. Appl..
[19] Pierre Comon,et al. Enhanced Line Search: A Novel Method to Accelerate PARAFAC , 2008, SIAM J. Matrix Anal. Appl..
[20] Daniel M. Dunlavy,et al. An Optimization Approach for Fitting Canonical Tensor Decompositions. , 2009 .
[21] P. Paatero. The Multilinear Engine—A Table-Driven, Least Squares Program for Solving Multilinear Problems, Including the n-Way Parallel Factor Analysis Model , 1999 .
[22] Lieven De Lathauwer,et al. Decompositions of a Higher-Order Tensor in Block Terms - Part III: Alternating Least Squares Algorithms , 2008, SIAM J. Matrix Anal. Appl..
[23] J. Dennis,et al. Two new unconstrained optimization algorithms which use function and gradient values , 1979 .
[24] A. Bos. Complex gradient and Hessian , 1994 .
[25] Lieven De Lathauwer,et al. Unconstrained Optimization of Real Functions in Complex Variables , 2012, SIAM J. Optim..
[26] Jerry M. Mendel,et al. The constrained total least squares technique and its applications to harmonic superresolution , 1991, IEEE Trans. Signal Process..
[27] Andrzej Cichocki,et al. Nonnegative Matrix and Tensor Factorization T , 2007 .
[28] A. Stegeman,et al. On the Non-Existence of Optimal Solutions and the Occurrence of “Degeneracy” in the CANDECOMP/PARAFAC Model , 2008, Psychometrika.
[29] Alwin Stegeman,et al. Low-Rank Approximation of Generic p˟q˟2 Arrays and Diverging Components in the Candecomp/Parafac Model , 2008, SIAM J. Matrix Anal. Appl..
[30] Jorge J. Moré,et al. Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .
[31] T. Steihaug. The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .
[32] Lieven De Lathauwer,et al. Swamp reducing technique for tensor decomposition , 2008, 2008 16th European Signal Processing Conference.
[33] Nikos D. Sidiropoulos,et al. Blind PARAFAC receivers for DS-CDMA systems , 2000, IEEE Trans. Signal Process..
[34] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[35] Lieven De Lathauwer,et al. Block Component Analysis, a New Concept for Blind Source Separation , 2012, LVA/ICA.
[36] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[37] L. Imhof. Matrix Algebra and Its Applications to Statistics and Econometrics , 1998 .
[38] P. Wolfe. Convergence Conditions for Ascent Methods. II , 1969 .
[39] Lieven De Lathauwer,et al. Decompositions of a Higher-Order Tensor in Block Terms - Part I: Lemmas for Partitioned Matrices , 2008, SIAM J. Matrix Anal. Appl..
[40] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[41] Nikos D. Sidiropoulos,et al. Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints , 2004, IEEE Transactions on Signal Processing.
[42] P. Kroonenberg. Applied Multiway Data Analysis , 2008 .
[43] F. L. Hitchcock. Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .
[44] Andrzej Cichocki,et al. Low Complexity Damped Gauss-Newton Algorithms for CANDECOMP/PARAFAC , 2012, SIAM J. Matrix Anal. Appl..
[45] Lieven De Lathauwer,et al. Blind Deconvolution of DS-CDMA Signals by Means of Decomposition in Rank-$(1,L,L)$ Terms , 2008, IEEE Transactions on Signal Processing.
[46] L. Lathauwer,et al. An enhanced plane search scheme for complex-valued tensor decompositions , 2010 .
[47] Rasmus Bro,et al. MULTI-WAY ANALYSIS IN THE FOOD INDUSTRY Models, Algorithms & Applications , 1998 .
[48] Ben C. Mitchell,et al. Slowly converging parafac sequences: Swamps and two‐factor degeneracies , 1994 .
[49] J. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .
[50] Pierre Comon,et al. Special Issue on Tensor Decompositions and Applications , 2008, SIAM J. Matrix Anal. Appl..
[51] N. Sidiropoulos,et al. On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .
[52] William W. Hager,et al. A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..
[53] J. Kruskal. Rank, decomposition, and uniqueness for 3-way and n -way arrays , 1989 .
[54] Andrzej Cichocki,et al. On Fast Computation of Gradients for CANDECOMP/PARAFAC Algorithms , 2012, ArXiv.
[55] Rasmus Bro,et al. A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..
[56] Lieven De Lathauwer,et al. A short introduction to tensor-based methods for Factor Analysis and Blind Source Separation , 2011, 2011 7th International Symposium on Image and Signal Processing and Analysis (ISPA).
[57] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[58] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[59] M. Powell. A New Algorithm for Unconstrained Optimization , 1970 .
[60] A. Stegeman. Degeneracy in Candecomp/Parafac explained for p × p × 2 arrays of rank p + 1 or higher , 2006 .
[61] Moritz Diehl,et al. The Lifted Newton Method and Its Application in Optimization , 2009, SIAM J. Optim..
[62] Lieven De Lathauwer,et al. Block component analysis , 2011 .
[63] P. Comon,et al. Tensor decompositions, alternating least squares and other tales , 2009 .
[64] Nikos D. Sidiropoulos,et al. Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..
[65] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[66] Pierre Comon,et al. Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .
[67] David J. Thuente,et al. Line search algorithms with guaranteed sufficient decrease , 1994, TOMS.
[68] Tamara G. Kolda,et al. Efficient MATLAB Computations with Sparse and Factored Tensors , 2007, SIAM J. Sci. Comput..