Boundary circles for area-preserving maps

[1]  D. K. Umberger,et al.  A universal strange attractor underlying the quasiperiodic transition to chaos , 1986 .

[2]  I. C. Percival,et al.  Converse KAM: Theory and practice , 1985 .

[3]  Bo Söderberg,et al.  Scaling Laws for Mode Lockings in Circle Maps , 1985 .

[4]  Edward Ott,et al.  Markov tree model of transport in area-preserving maps , 1985 .

[5]  James D. Meiss,et al.  Algebraic decay in self-similar Markov chains , 1985 .

[6]  Farmer,et al.  Renormalization of the quasiperiodic transition to chaos for arbitrary winding numbers. , 1985, Physical review. A, General physics.

[7]  R. MacKay,et al.  An approximation to the critical commuting pair for breakup of noble tori , 1985 .

[8]  Dima L. Shepelyansky,et al.  CORRELATION PROPERTIES OF DYNAMICAL CHAOS IN HAMILTONIAN SYSTEMS , 1984 .

[9]  L. Kadanoff,et al.  Extended chaos and disappearance of KAM trajectories , 1984 .

[10]  S. Aubry,et al.  The discrete Frenkel-Kontorova model and its extensions: I. Exact results for the ground-states , 1983 .

[11]  R. MacKay A renormalization approach to invariant circles in area-preserving maps , 1983 .

[12]  H. Abarbanel,et al.  Long-time correlations of periodic, area-preserving maps , 1982 .

[13]  S. Shenker,et al.  Critical behavior of a KAM surface: I. Empirical results , 1982 .

[14]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[15]  D. Saari,et al.  Stable and Random Motions in Dynamical Systems , 1975 .

[16]  R. Robinson,et al.  GENERIC PROPERTIES OF CONSERVATIVE SYSTEMS. , 1970 .

[17]  L. E. Dickson Introduction to the theory of numbers , 1933 .

[18]  R. MacKay Transition to chaos for area-preserving maps , 1986 .

[19]  Seunghwan Kim,et al.  Renormalization of Quasiperiodic Mappings , 1985 .

[20]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[21]  B. Chirikov Chaotic dynamics in Hamiltonian systems with divided phase space , 1983 .

[22]  J. Mather,et al.  Existence of quasi-periodic orbits for twist homeomorphisms of the annulus , 1982 .

[23]  George D. Birkhoff,et al.  Proof of Poincaré’s geometric theorem , 1913 .