Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects

[1]  M. Goldberg,et al.  Response of neurons in the lateral intraparietal area to a distractor flashed during the delay period of a memory-guided saccade. , 2000, Journal of neurophysiology.

[2]  Kando Kobayashi,et al.  The precuneus in motor imagery: a magnetoencephalographic study , 2000, Neuroreport.

[3]  D P Munoz,et al.  Neuronal Correlates for Preparatory Set Associated with Pro-Saccades and Anti-Saccades in the Primate Frontal Eye Field , 2000, The Journal of Neuroscience.

[4]  B. Gaymard,et al.  The frontal eye field is involved in spatial short-term memory but not in reflexive saccade inhibition , 1999, Experimental Brain Research.

[5]  M. Goldberg,et al.  Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task , 1999, Nature Neuroscience.

[6]  M. W. Greenlee,et al.  MR-Eyetracker: a new method for eye movement recording in functional magnetic resonance imaging , 1999, Experimental Brain Research.

[7]  R M Müri,et al.  Functional organisation of saccades and antisaccades in the frontal lobe in humans: a study with echo planar functional magnetic resonance imaging , 1998, Journal of neurology, neurosurgery, and psychiatry.

[8]  C. Michel,et al.  PET study of human voluntary saccadic eye movements in darkness: effect of task repetition on the activation pattern , 1998, The European journal of neuroscience.

[9]  M. Schlag-Rey,et al.  Antisaccade performance predicted by neuronal activity in the supplementary eye field , 1997, Nature.

[10]  A Berthoz,et al.  Parietal and hippocampal contribution to topokinetic and topographic memory. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[11]  E. J. Tehovnik,et al.  Reversible inactivation of macaque frontal eye field , 1997, Experimental Brain Research.

[12]  Valentino Bettinardi,et al.  Neural control of fast-regular saccades and antisaccades: an investigation using positron emission tomography , 1997, Experimental Brain Research.

[13]  W. Oertel,et al.  Functional MRI mapping of occipital and frontal cortical activity during voluntary and imagined saccades , 1997, Neurology.

[14]  C. Bruce,et al.  Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field. , 1997, Journal of neurophysiology.

[15]  J Felblinger,et al.  Recordings of eye movements for stimulus control during fMRI by means of electro‐oculographic methods , 1996, Magnetic resonance in medicine.

[16]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[17]  Anna C. Nobre,et al.  Cortical Activation in the Human Brain during Lateral Saccades Using EPISTAR Functional Magnetic Resonance Imaging , 1996, NeuroImage.

[18]  Alan C. Evans,et al.  Extraretinal modulation of cerebral blood flow in the human visual cortex: implications for saccadic suppression. , 1995, Journal of neurophysiology.

[19]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[20]  D. Levy,et al.  Functional neuroanatomy of antisaccade eye movements investigated with positron emission tomography. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Richard S. J. Frackowiak,et al.  Cortical control of saccades and fixation in man. A PET study. , 1994, Brain : a journal of neurology.

[22]  Alan C. Evans,et al.  Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. , 1993, Journal of neurophysiology.

[23]  A. Berthoz,et al.  PET study of voluntary saccadic eye movements in humans: basal ganglia-thalamocortical system and cingulate cortex involvement. , 1993, Journal of neurophysiology.

[24]  Ravi S. Menon,et al.  Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. , 1993, Biophysical journal.

[25]  M. Corbetta,et al.  A PET study of visuospatial attention , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  G. S. Russo,et al.  Effect of eye position within the orbit on electrically elicited saccadic eye movements: a comparison of the macaque monkey's frontal and supplementary eye fields. , 1993, Journal of neurophysiology.

[27]  R. Turner,et al.  Functional mapping of the human visual cortex at 4 and 1.5 tesla using deoxygenation contrast EPI , 1993, Magnetic resonance in medicine.

[28]  T Mergner,et al.  Saccadic reaction times in patients with frontal and parietal lesions. , 1992, Brain : a journal of neurology.

[29]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[30]  R. S. Hinks,et al.  Time course EPI of human brain function during task activation , 1992, Magnetic resonance in medicine.

[31]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[32]  G. McCarthy,et al.  Functional organization of human supplementary motor cortex studied by electrical stimulation , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. , 1991, Journal of neurophysiology.

[34]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. II. Spatial properties. , 1991, Journal of neurophysiology.

[35]  J. Schall Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: comparison with supplementary eye fields. , 1991, Journal of neurophysiology.

[36]  P. Goldman-Rakic,et al.  Neuronal activity related to saccadic eye movements in the monkey's dorsolateral prefrontal cortex. , 1991, Journal of neurophysiology.

[37]  Y Agid,et al.  Cortical control of reflexive visually-guided saccades. , 1991, Brain : a journal of neurology.

[38]  S. Ogawa,et al.  Oxygenation‐sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields , 1990, Magnetic resonance in medicine.

[39]  L. Henderson,et al.  Abnormalities of nonvisually-guided eye movements in Parkinson's disease. , 1989, Brain : a journal of neurology.

[40]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[41]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[42]  M. Mintun,et al.  Nonoxidative glucose consumption during focal physiologic neural activity. , 1988, Science.

[43]  D. Sparks,et al.  Population coding of saccadic eye movements by neurons in the superior colliculus , 1988, Nature.

[44]  M. Raichle,et al.  Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[45]  C. Bruce,et al.  Primate frontal eye fields. I. Single neurons discharging before saccades. , 1985, Journal of neurophysiology.

[46]  C. Gross,et al.  Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[47]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[48]  J. L. Conway,et al.  Deficits in eye movements following frontal eye-field and superior colliculus ablations. , 1980, Journal of neurophysiology.

[49]  Peter H. Schiller,et al.  The effect of superior colliculus ablation on saccades elicted by cortical stimulation , 1977, Brain Research.

[50]  M E Raichle,et al.  Correlation Between Regional Cerebral Blood Flow and Oxidative Metabolism: In Vivo Studies in Man , 1976 .

[51]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[52]  B. J. McCurtain,et al.  Dorsal cortical regions subserving visually guided saccades in humans: an fMRI study. , 1998, Cerebral cortex.

[53]  R. Andersen,et al.  Multimodal representation of space in the posterior parietal cortex and its use in planning movements. , 1997, Annual review of neuroscience.

[54]  J. Schall Visuomotor Areas of the Frontal Lobe , 1997 .

[55]  M. Mintun,et al.  Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. , 1996, Journal of neurophysiology.

[56]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[57]  Martin I. Sereno,et al.  Cortical visual areas in mammals , 1991 .

[58]  M. Schlag-Rey,et al.  Evidence for a supplementary eye field. , 1987, Journal of neurophysiology.

[59]  R. Wurtz,et al.  Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. , 1985, Journal of neurophysiology.

[60]  R. Wurtz,et al.  Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in monkey substantia nigra pars reticulata. , 1985, Journal of neurophysiology.