Depth recovery and affine reconstruction under camera pure translation

This paper addresses the problems of depth recovery and affine reconstruction from two perspective images, which are generated by an uncalibrated translating camera. Firstly, we develop a new constraint that the homography for the plane, which is orthogonal to the optical axis, is determined only by the epipole and the plane's relative distance to the origin under camera pure translation. The algorithm of depth recovery is based on this new constraint, and it can successfully avoid the step of camera calibration. With the recovered depth, we show that affine reconstruction can be obtained readily. The proposed affine reconstruction does not need any control points, which were used to expand the affine coordinate system in existing method. Therefore, it could avoid the step of non-planarity verification as well as the errors from the control points. Error analysis is also presented to evaluate the uncertainty for the recovered depth value. Finally, we have tested the proposed algorithm with both simulated data and real image data. And the results show that the proposed algorithm is accurate and practical.