Well-posedness for the stochastic electrokinetic flow

We investigate the stochastic electrokinetic flow modelled by a stochastic NernstPlanck-Navier-Stokes system with a blocking boundary conditions for ionic species concentrations in a smooth bounded domain D. In both 2D and 3D cases, we establish the global existence of weak martingale solution when the capacitance ς > 0, and also establish the existence of a unique maximal strong pathwise solution and a blow-up criterion when the capacitance ς = 0. In particular, we show that the maximal pathwise solution is global in 2D case without the restriction of smallness of initial data.

[1]  J. Prüss,et al.  Mass transport through charged membranes , 2002 .

[2]  R. Temam,et al.  Local martingale and pathwise solutions for an abstract fluids model , 2010, 1007.2831.

[3]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[4]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[5]  Dariusz Gatarek,et al.  Martingale and stationary solutions for stochastic Navier-Stokes equations , 1995 .

[6]  L. Bedin,et al.  Existence theory for a Poisson-Nernst-Planck model of electrophoresis , 2011, 1102.5370.

[7]  Fizay-Noah Lee Global Regularity for Nernst-Planck-Navier-Stokes Systems , 2021 .

[8]  James Michael MacFarlane Existence , 2020, Transhumanism as a New Social Movement.

[9]  Hannelore Breckner Galerkin approximation and the strong solution of theNavier-Stokes equation , 2000 .

[10]  B. Kirby Micro- and nanoscale fluid mechanics : transport in microfluidic devices , 2010 .

[11]  Piotr Biler,et al.  Long Time Behavior of Solutions to Nernst – Planck and Debye – Hückel Drift – Diffusion Systems , 1999 .

[12]  M. Ziane,et al.  Strong pathwise solutions of the stochastic Navier-Stokes system , 2009, Advances in Differential Equations.

[13]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[14]  M. Trojanowicz Advances in Flow Analysis , 2008 .

[15]  J. U. Kim Existence of a local smooth solution in probability to the stochastic Euler equations in R3 , 2009 .

[16]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[17]  Michael E. Taylor,et al.  Partial Differential Equations III , 1996 .

[18]  Benoît Perthame,et al.  Global Solutions of Some Chemotaxis and Angiogenesis Systems in High Space Dimensions , 2004 .

[19]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[20]  H. Gajewski,et al.  Reaction—Diffusion Processes of Electrically Charged Species , 1996 .

[21]  Markus Schmuck,et al.  ANALYSIS OF THE NAVIER–STOKES–NERNST–PLANCK–POISSON SYSTEM , 2009 .

[22]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[23]  F. Flandoli,et al.  Partial regularity for the stochastic Navier-Stokes equations , 2002 .

[24]  D. Gatarek,et al.  Stochastic Equations in Hilbert Space with Application to Navier-Stokes Equations in Any Dimension , 1994 .

[25]  Rolf J. Ryham,et al.  Existence, Uniqueness, Regularity and Long-term Behavior for Dissipative Systems Modeling Electrohydrodynamics , 2009, 0910.4973.

[26]  R. Lui,et al.  Multi-dimensional electrochemistry model , 1995 .

[27]  Darryl D. Holm,et al.  Solution Properties of a 3D Stochastic Euler Fluid Equation , 2017, J. Nonlinear Sci..

[28]  Piotr Biler,et al.  The Debye system: existence and large time behavior of solutions , 1994 .

[29]  Annie Millet,et al.  Large Deviations and the Zero Viscosity Limit for 2D Stochastic Navier-Stokes Equations with Free Boundary , 2012, SIAM J. Math. Anal..

[30]  H. Gajewski,et al.  On the basic equations for carrier transport in semiconductors , 1986 .

[31]  Peter Constantin,et al.  On the Nernst–Planck–Navier–Stokes system , 2018, Archive for Rational Mechanics and Analysis.

[32]  Jinqiao Duan An Introduction to Stochastic Dynamics , 2015 .

[33]  Robert Denk,et al.  Optimal Lp-Lq-regularity for parabolic problems with inhomogeneous boundary data , 2005 .

[34]  Hannelore. Breckner Approximation and optimal control of the stochastic Navier-Stokes equation , 1999 .

[35]  S. Chang New Electrokinetic Techniques for Material Manipulation on the Microscale , 2008 .

[36]  A. Bensoussan,et al.  Equations stochastiques du type Navier-Stokes , 1973 .

[37]  S. Bruckenstein Physicochemical hydrodynamics , 1977, Nature.

[38]  I. Gyöngy,et al.  Existence of strong solutions for Itô's stochastic equations via approximations , 1996 .

[39]  Joseph W. Jerome,et al.  ANALYTICAL APPROACHES TO CHARGE TRANSPORT IN A MOVING MEDIUM , 2002 .

[40]  A. Jakubowski,et al.  Short Communication:The Almost Sure Skorokhod Representation for Subsequences in Nonmetric Spaces , 1998 .

[41]  D. Breit,et al.  Stochastic Navier-Stokes equations for compressible fluids , 2014, 1409.2706.

[42]  Boris Rozovskii,et al.  Stochastic Navier-Stokes Equations for Turbulent Flows , 2004, SIAM J. Math. Anal..

[43]  Dehua Wang,et al.  Global existence of martingale solutions to the three-dimensional stochastic compressible Navier-Stokes equations , 2015, Differential and Integral Equations.

[44]  Jose Luis Menaldi,et al.  Stochastic 2-D Navier—Stokes Equation , 2002 .

[45]  P. Constantin,et al.  Nernst–Planck–Navier–Stokes Systems far from Equilibrium , 2020, Archive for Rational Mechanics and Analysis.

[46]  Dieter Bothe,et al.  Global Well-Posedness and Stability of Electrokinetic Flows , 2014, SIAM J. Math. Anal..

[47]  Tomás Caraballo,et al.  On the existence and uniqueness of solutions to stochastic three-dimensional Lagrangian averaged Navier–Stokes equations , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  Jacques Simon,et al.  Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure , 1990 .

[49]  J. Saal,et al.  Global weak solutions in three space dimensions for electrokinetic flow processes , 2017 .

[50]  Riccardo Sacco,et al.  Global Weak Solutions for an Incompressible Charged Fluid with Multi-Scale Couplings: Initial-Boundary Value Problem , 2009 .