Healable supramolecular polymers

This mini-review details the recent development of self-healing and mendable polymeric materials which take advantage of the reversible characteristics of non-covalent interactions during their physical recovery process. Supramolecular polymer systems which undergo spontaneous (autonomous) healing, as well as those which require external stimuli to initiate the healing process (healable/mendable), are introduced and discussed. Supramolecular polymers offer key advantages over alternative approaches, as these materials can typically withstand multiple healing cycles without substantial loss of performance, as a consequence of the highly directional and fully reversible non-covalent interactions present within the polymer matrix.

[1]  Henk M. Janssen,et al.  Self‐Healing Supramolecular Polymers In Action , 2012 .

[2]  P. Woodward,et al.  Thermally Responsive Elastomeric Supramolecular Polymers Featuring Flexible Aliphatic Hydrogen-Bonding End-Groups , 2009 .

[3]  Christopher Barner-Kowollik,et al.  Current trends in the field of self-healing materials , 2012 .

[4]  Ludwik Leibler,et al.  Synthesis of Self-Healing Supramolecular Rubbers from Fatty Acid Derivatives, Diethylene Triamine, and Urea , 2008 .

[5]  R. Simha,et al.  Deformation-Induced Color Changes in Mechanochromic Polyethylene Blends , 2007 .

[6]  Stuart J. Rowan,et al.  A self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor pi-pi stacking interactions. , 2009, Chemical communications.

[7]  Kentaro Abe,et al.  Review: current international research into cellulose nanofibres and nanocomposites , 2010, Journal of Materials Science.

[8]  H. Colquhoun Self-repairing polymers: materials that heal themselves. , 2012, Nature chemistry.

[9]  Aaron M Kushner,et al.  Multiphase design of autonomic self-healing thermoplastic elastomers. , 2012, Nature chemistry.

[10]  B. Iverson,et al.  An Amphiphilic Folding Molecule That Undergoes an Irreversible Conformational Change , 1999 .

[11]  Lynn A. Capadona,et al.  A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. , 2007, Nature nanotechnology.

[12]  J. Lewis,et al.  Self-healing materials with microvascular networks. , 2007, Nature materials.

[13]  Benjamin C. K. Tee,et al.  An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. , 2012, Nature nanotechnology.

[14]  W. Hayes,et al.  Design, synthesis and computational modelling of aromatic tweezer-molecules as models for chain-folding polymer blends , 2008 .

[15]  R. Lokey,et al.  A New Class of Polyintercalating Molecules , 1997 .

[16]  Fred Wudl,et al.  The world of smart healable materials , 2010 .

[17]  Stuart J. Rowan,et al.  Influence of Metal Ion and Polymer Core on the Melt Rheology of Metallosupramolecular Films , 2012 .

[18]  Howard M Colquhoun,et al.  Sequence-selective assembly of tweezer molecules on linear templates enables frameshift-reading of sequence information , 2010, Nature Chemistry.

[19]  Sebastian Seiffert,et al.  Physical chemistry of supramolecular polymer networks. , 2012, Chemical Society reviews.

[20]  D. Wu,et al.  Self-healing polymeric materials: A review of recent developments , 2008 .

[21]  J. Lehn,et al.  Molecular recognition directed self‐assembly of supramolecular liquid crystalline polymers from complementary chiral components , 1990 .

[22]  Christoph Weder,et al.  Light-activated healing of metallosupramolecular polymers. , 2011, Chimia.

[23]  J. F. Stoddart,et al.  Mechanically bonded macromolecules. , 2010, Chemical Society reviews.

[24]  Stuart J Rowan,et al.  High-strength, healable, supramolecular polymer nanocomposites. , 2012, Journal of the American Chemical Society.

[25]  David J. Williams,et al.  Second Sphere Coordination of Cationic Platinum Complexes by Crown Ethers— The X‐Ray Crystal Structure of [Pt(bpy)(NH3)2. Dibenzo[30]crown‐10]2+[PF6] 2−xH2O (x≈0.6) , 1981 .

[26]  Christoph Weder,et al.  Oligo(p‐phenylene vinylene)s as a “New” Class of Piezochromic Fluorophores , 2008 .

[27]  S. Rowan,et al.  Metal/Ligand-Induced Formation of Metallo-Supramolecular Polymers , 2005 .

[28]  Andreas Winter,et al.  Advanced supramolecular initiator for nitroxide-mediated polymerizations containing both metal-ion coordination and hydrogen-bonding sites. , 2009, Chemical communications.

[29]  R. Stadler,et al.  New multiphase architecture from statistical copolymers by cooperative hydrogen bond formation , 1990 .

[30]  Andrew J. Wilson,et al.  Tunable Self-Assembled Elastomers Using Triply Hydrogen-Bonded Arrays , 2012 .

[31]  Richard P. Wool,et al.  A theory of healing at a polymer-polymer interface , 1983 .

[32]  J. Lewis,et al.  Delivery of Two‐Part Self‐Healing Chemistry via Microvascular Networks , 2009 .

[33]  M. Takayanagi,et al.  Application of equivalent model method to dynamic rheo‐optical properties of crystalline polymer , 2007 .

[34]  K. Chino,et al.  Themoreversible Cross-Linking Rubber Using Supramolecular Hydrogen-Bonding Networks , 2001 .

[35]  J. G. Williams,et al.  Fracture mechanics studies of crack healing and welding of polymers , 1981 .

[36]  Jonathan Seppala,et al.  A healable supramolecular polymer blend based on aromatic pi-pi stacking and hydrogen-bonding interactions. , 2010, Journal of the American Chemical Society.

[37]  C. R. Becer,et al.  Self-healing and self-mendable polymers , 2010 .

[38]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[39]  Wayne Hayes,et al.  Healable polymeric materials: a tutorial review. , 2010, Chemical Society reviews.

[40]  Marek W. Urban,et al.  Stratification, stimuli-responsiveness, self-healing, and signaling in polymer networks , 2009 .

[41]  R. Lokey,et al.  Synthetic molecules that fold into a pleated secondary structure in solution , 1995, Nature.

[42]  S. Rowan,et al.  Metallo-Supramolecular Polymerization: A Route to Easy-To-Process Organic/Inorganic Hybrid Materials , 2007 .

[43]  E. W. Meijer,et al.  Supramolecular polymers at work , 2004 .

[44]  E. W. Meijer,et al.  Supramolecular Polymer Materials: Chain Extension of Telechelic Polymers Using a Reactive Hydrogen-Bonding Synthon** , 2000 .

[45]  Jeffrey S. Moore,et al.  Self-Healing Polymers and Composites , 2010 .

[46]  W. Hayes,et al.  A novel self-healing supramolecular polymer system. , 2009, Faraday discussions.

[47]  T. Park,et al.  A highly stable quadruply hydrogen-bonded heterocomplex useful for supramolecular polymer blends. , 2005, Journal of the American Chemical Society.

[48]  M. Mackay,et al.  Utilization of a combination of weak hydrogen-bonding interactions and phase segregation to yield highly thermosensitive supramolecular polymers. , 2005, Journal of the American Chemical Society.

[49]  Howard M Colquhoun,et al.  Sterically controlled recognition of macromolecular sequence information by molecular tweezers. , 2007, Journal of the American Chemical Society.

[50]  R. Wool Self-healing materials: a review. , 2008, Soft matter.

[51]  Howard M Colquhoun,et al.  Recognition of polyimide sequence information by a molecular tweezer. , 2004, Angewandte Chemie.

[52]  N. Sottos,et al.  Autonomic healing of polymer composites , 2001, Nature.

[53]  M. Mackay,et al.  A Supramolecular Polymer Based on Tweezer-Type π−π Stacking Interactions: Molecular Design for Healability and Enhanced Toughness , 2011 .

[54]  Justin R. Kumpfer,et al.  Optically healable supramolecular polymers , 2011, Nature.

[55]  U. Schubert,et al.  Thermosensitive and Switchable Terpyridine- Functionalized Metallo-Supramolecular Poly(N-isopropylacrylamide) , 2008 .

[56]  E. W. Meijer,et al.  Supramolecular polymers from linear telechelic siloxanes with quadruple- hydrogen- bonded units , 1999 .

[57]  E. W. Meijer,et al.  Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. , 1997, Science.