An Optimized Technique for Wigner Kernel Estimation

We study an optimized Adaptive Monte Carlo algorithm for the Wigner kernel - an important problem in quantum mechanics. We will compare the results with the basic adaptive approach and other stochastic approaches for computing the Wigner kernel represented by difficult multidimensional integrals in dimension d up to 12. The higher cases d > 12 will be considered for the first time. A comprehensive study and an analysis of the computational complexity of the optimized Adaptive MC algorithm under consideration has also been presented.

[1]  Jean Michel D. Sellier,et al.  A signed particle formulation of non-relativistic quantum mechanics , 2015, J. Comput. Phys..

[2]  J. M. Sellier,et al.  On a full Monte Carlo approach to quantum mechanics , 2016 .

[3]  Sihong Shao,et al.  Comparison of deterministic and stochastic methods for time-dependent Wigner simulations , 2015, J. Comput. Phys..

[4]  Sean McKee,et al.  Monte Carlo Methods for Applied Scientists , 2005 .

[5]  J. M. Sellier,et al.  An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism , 2015 .

[6]  I. Dimov,et al.  Adaptive Monte Carlo algorithm for Wigner kernel evaluation , 2019, Neural Computing and Applications.

[7]  Sihong Shao,et al.  Adaptive Conservative Cell Average Spectral Element Methods for Transient Wigner Equation in Quantum Transport , 2011 .

[8]  Sihong Shao,et al.  An Advective-Spectral-Mixed Method for Time-Dependent Many-Body Wigner Simulations , 2016, SIAM J. Sci. Comput..

[9]  Rayna Georgieva,et al.  Monte Carlo algorithms for evaluating Sobol' sensitivity indices , 2010, Math. Comput. Simul..

[10]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[11]  Terje O. Espelid,et al.  An adaptive algorithm for the approximate calculation of multiple integrals , 1991, TOMS.

[12]  Rayna Georgieva,et al.  Parallel Importance Separation and Adaptive Monte Carlo Algorithms for Multiple Integrals , 2002, Numerical Methods and Application.

[13]  Ivan Tomov Dimov,et al.  The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations , 2014, J. Comput. Phys..

[14]  R. Feynman,et al.  Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .