1D Vehicle Scheduling with Conflicts

Systems of rail-mounted vehicles play a key role in many logistics applications, and the efficiency of their operation frequently has a significant impact on the overall performance of the surrounding production environment. In theory, assigning transport requests to the vehicles of such systems and scheduling their execution amounts to finding k tours on a common line, where tours may never cross each other in time---dynamic collision constraints need to be respected. The goal is to minimize the makespan for a given set of transport requests. We establish a model capturing the core challenges in transport planning problems of this type and relate it to other models in literature. After proving NP-hardness for a basic version of the problem, the large part of the paper is dedicated to devising various fast heuristic algorithms suitable for practice. We present computational results regarding the performance of the algorithms proposed for several classes of problem instances.