First observations of the fumarolic gas output from a restless caldera: Implications for the current period of unrest (2005–2013) at Campi Flegrei

[1] The fumarolic gas output has not been quantified for any of the currently deforming calderas worldwide, due to the lack of suitable gas flux sensing techniques. In view of resumption of ground uplift (since 2005) and the associated variations in gas chemistry, Campi Flegrei, in southern Italy, is one of the restless calderas where gas flux observations are especially necessary. Here we report the first ever obtained estimate of the Campi Flegrei fumarolic gas output, based on a set of MultiGAS surveys (performed in 2012 and 2013) with an ad-hoc-designed measurement setup. We estimate that the current Campi Flegrei fumarolic sulphur (S) flux is low, on the order of 1.5–2.2 tons/day, suggesting substantial scrubbing of magmatic S by the hydrothermal system. However, the fumarolic carbon dioxide (CO2) output is ∼460±160 tons/day (mean±SD), which is surprisingly high for a dormant volcano in the hydrothermal stage of activity, and results in a combined (fumaroles + soil) CO2 output of ∼1560 tons/day. Assuming magma to be the predominant source, we propose that the current CO2 output can be supplied by either (i) a large (0.6–4.6 km3), deeply stored (>7 km) magmatic source with low CO2 contents (0.05–0.1 wt%) or (ii) by a small to medium-sized (∼0.01–0.1 km3) but CO2-rich (2 wt%) magma, possibly stored at pressures of ∼100 to 120 MPa. Independent geophysical evidence (e.g., inferred from geodetic and gravity data) is needed to distinguish between these two possibilities.

[1]  A. Bertagnini,et al.  Crystal fractionation, magma step ascent, and syn-eruptive mingling: the Averno 2 eruption (Phlegraean Fields, Italy) , 2012, Contributions to Mineralogy and Petrology.

[2]  G. Chiodini,et al.  First 13C/12C isotopic characterisation of volcanic plume CO2 , 2011 .

[3]  J. Gottsmann,et al.  Unrest at Campi Flegrei: A contribution to the magmatic versus hydrothermal debate from inverse and finite element modeling , 2006 .

[4]  Daniele Giordano,et al.  Texture and composition of pumices and scoriae from the Campi Flegrei caldera (Italy): Implications on the dynamics of explosive eruptions , 2008 .

[5]  D. Hill Unrest in Long Valley Caldera, California, 1978–2004 , 2006, Geological Society, London, Special Publications.

[6]  Mike Burton,et al.  Unusually large magmatic CO2 gas emissions prior to a basaltic paroxysm , 2010 .

[7]  Luca D'Auria,et al.  Repeated fluid‐transfer episodes as a mechanism for the recent dynamics of Campi Flegrei caldera (1989–2010) , 2011 .

[8]  F. Stuart,et al.  Helium–strontium isotope constraints on mantle evolution beneath the Roman Comagmatic Province, Italy , 2004 .

[9]  R. Moretti,et al.  The Deep Plumbing System of Ischia: a Physico-chemical Window on the Fluid-saturated and CO2-sustained Neapolitan Volcanism (Southern Italy) , 2013 .

[10]  Massimo D'Antonio,et al.  Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy) , 1999 .

[11]  Rosario Avino,et al.  Temperature and pressure gas geoindicators at the Solfatara fumaroles (Campi Flegrei) , 2011 .

[12]  N. Métrich,et al.  Volatile Abundances in Basaltic Magmas and Their Degassing Paths Tracked by Melt Inclusions , 2008 .

[13]  Ultraviolet Sensing of Volcanic Sulfur Emissions , 2010 .

[14]  M. Bonafede,et al.  Hot fluid migration: an efficient source of ground deformation: application to the 1982–1985 crisis at Campi Flegrei-Italy , 1991 .

[15]  G. Ventura,et al.  Fumarolic and diffuse soil degassing west of Mount Epomeo, Ischia, Italy , 2004 .

[16]  G. Berrino,et al.  On deformation sources in volcanic areas: modeling the Campi Flegrei (Italy) 1982-84 unrest , 2011 .

[17]  A. McGonigle,et al.  H2S fluxes from Mt. Etna, Stromboli, and Vulcano (Italy) and implications for the sulfur budget at volcanoes , 2005 .

[18]  Carlo Cardellini,et al.  Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity , 2010 .

[19]  T. K. Kyser,et al.  Stable isotope variations in the mantle , 1986 .

[20]  C. Troise,et al.  Mechanisms of Activity and Unrest at Large Calderas , 2006 .

[21]  R. Moretti,et al.  A CO2-rich magma source beneath the Phlegraean Volcanic District (Southern Italy): Evidence from a melt inclusion study , 2011 .

[22]  C. Mandeville,et al.  Sulfur in Magmas , 2010 .

[23]  Carlo Cardellini,et al.  Carbon dioxide Earth degassing and seismogenesis in central and southern Italy , 2004 .

[24]  F. Cipriani,et al.  Studio di una sequenza piroclastica del vulcano della Solfatara (Campi Flegrei). Considerazioni vulcanologiche e sul sistema di alimentazione , 2008 .

[25]  G. P. Ricciardi,et al.  Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905-2009 , 2010 .

[26]  Massimo DAntonio Lithology of the basement underlying the Campi Flegrei caldera: Volcanological and petrological cons , 2011 .

[27]  Jean Virieux,et al.  Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera , 2008 .

[28]  D. Tedesco,et al.  Isotopic study of the origin of sulfur and carbon in Solfatara fumaroles, Campi Flegrei caldera , 1991 .

[29]  Mike Burton,et al.  Deep Carbon Emissions from Volcanoes , 2013 .

[30]  Christopher G. Newhall,et al.  Historical unrest at large calderas of the world , 1989 .

[31]  G. Natale,et al.  A mechanical fluid-dynamical model for ground movements at Campi Flegrei caldera , 2001 .

[32]  M. Liuzzo,et al.  Hydrogen in the gas plume of an open‐vent volcano, Mount Etna, Italy , 2011 .

[33]  G. Chiodini,et al.  Monitoring and modelling hydrothermal fluid emission at La Solfatara (Phlegrean Fields, Italy). An interdisciplinary approach to the study of diffuse degassing , 2003 .

[34]  I. Chaplygin,et al.  First volatile inventory for Gorely volcano, Kamchatka , 2012 .

[35]  M. Burton,et al.  First observational evidence for the CO 2 -driven origin of Stromboli's major explosions , 2011 .

[36]  P. Gasparini,et al.  History of earthquakes and vertical ground movement in Campi Flegrei caldera, Southern Italy: comparison of precursory events to the A.D. 1538 eruption of Monte Nuovo and of activity since 1968 , 1991 .

[37]  I. Arienzo,et al.  The magmatic feeding system of the Campi Flegrei caldera: Architecture and temporal evolution , 2011 .

[38]  Rosario Avino,et al.  The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy) , 2007 .

[39]  P. Zettwoog,et al.  Sulphur output and magma degassing budget of Stromboli volcano , 1994, Nature.

[40]  Mike Burton,et al.  Volcanic Gas Emissions from the Summit Craters and Flanks of Mt. Etna, 1987–2000 , 2004 .

[41]  G. Chiodini,et al.  Magma degassing as a trigger of bradyseismic events: The case of Phlegrean Fields (Italy) , 2003 .

[42]  R. Blong,et al.  Rabaul Caldera, Papua New Guinea: Volcanic hazards, surveillance, and eruption contingency planning , 1985 .

[43]  Demitris Paradissis,et al.  Evolution of Santorini Volcano dominated by episodic and rapid fluxes of melt from depth , 2012 .

[44]  L. Crescentini,et al.  Simultaneous inversion of deformation and gravity changes in a horizontally layered half-space: Evidences for magma intrusion during the 1982–1984 unrest at Campi Flegrei caldera (Italy) , 2008 .

[45]  M. A. Di Vito,et al.  The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration , 1996 .

[46]  Enzo Boschi,et al.  Renewed ground uplift at Campi Flegrei caldera (Italy): New insight on magmatic processes and forecast , 2007 .

[47]  Gaetano Giudice,et al.  Chemical mapping of a fumarolic field: La Fossa Crater, Vulcano Island (Aeolian Islands, Italy) , 2005 .

[48]  L. Pappalardo,et al.  Magma ascent and eruptive processes from textural and compositional features of Monte Nuovo pyroclastic products, Campi Flegrei, Italy , 2005 .

[49]  F. Innocenti,et al.  Phlegraean Fields 1982–1984: Brief chronicle of a volcano emergency in a densely populated area , 1984 .

[50]  A. Paonita,et al.  Geochemical modeling of mixing between magmatic and hydrothermal gases: the case of Vulcano Island, Italy , 1999 .

[51]  Luigi Marini,et al.  CO2 degassing and energy release at Solfatara Volcano , 2001 .

[52]  P. Papale,et al.  The feeding system of Agnano-Monte Spina eruption (Campi Flegrei, Italy): Dragging the past into present activity and future scenarios , 2010 .

[53]  G. Natale,et al.  Geophysical and geochemical modelling of the 1982 1984 unrest phenomena at Campi Flegrei caldera (southern Italy) , 1991 .

[54]  D. Castagnolo,et al.  Genesis and evolution of unrest episodes at Campi Flegrei caldera : The role of thermal fluid-dynamical processes in the geothermal system , 1998 .

[55]  C. Cannatelli,et al.  Geochemistry of melt inclusions from the Fondo Riccio and Minopoli 1 eruptions at Campi Flegrei (Italy) , 2007 .

[56]  S. J. Schaefer,et al.  Volatiles from the 1994 Eruptions of Rabaul: Understanding Large Caldera Systems , 1996, Science.

[57]  Jean Virieux,et al.  Three‐dimensional seismic tomography from P wave and S wave microearthquake travel times and rock physics characterization of the Campi Flegrei Caldera , 2005 .

[58]  G. Chiodini,et al.  Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy , 2001 .

[59]  F. Bianco,et al.  Seismic attenuation imaging of Campi Flegrei: Evidence of gas reservoirs, hydrothermal basins, and feeding systems , 2010 .

[60]  Claudia Troise,et al.  Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy) , 2006 .

[61]  G. Chiodini,et al.  Origin of the fumarolic fluids of Vulcano Island, Italy and implications for volcanic surveillance , 1995 .

[62]  F. Bianco,et al.  The role of hydrothermal fluids in triggering the July–August 2000 seismic swarm at Campi Flegrei, Italy: evidence from seismological and mesostructural data , 2004 .

[63]  Hiroshi Shinohara,et al.  A new technique to estimate volcanic gas composition: plume measurements with a portable multi-sensor system , 2005 .

[64]  R. Cioni,et al.  Changes in eruptive style during the A.D. 1538 Monte Nuovo eruption (Phlegrean Fields, Italy): the role of syn-eruptive crystallization , 2005 .

[65]  J. Gottsmann,et al.  Caldera Volcanism: Analysis, Modelling and Response , 2008 .

[66]  P. Papale,et al.  Multiple magma degassing sources at an explosive volcano , 2013 .

[67]  J. Lowenstern,et al.  Monitoring super-volcanoes: geophysical and geochemical signals at Yellowstone and other large caldera systems , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[68]  W. Marzocchi,et al.  Long-term forecast of eruption style and size at Campi Flegrei caldera (Italy) , 2009 .

[69]  P. Papale,et al.  The deep magmatic system of the Campi Flegrei caldera (Italy) , 2008 .

[70]  Giovanna Berrino,et al.  Ground deformation and gravity changes accompanying the 1982 Pozzuoli uplift , 1984 .

[71]  Daniel Dzurisin,et al.  Uplift, thermal unrest and magma intrusion at Yellowstone caldera , 2006, Nature.

[72]  Rosario Avino,et al.  Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations , 2012 .

[73]  Harvey E. Belkin,et al.  Quantitative model for magma degassing and ground deformation (bradyseism) at Campi Flegrei, Italy: Implications for future eruptions , 2007 .

[74]  Christophe Morhange,et al.  Rapid sea-level movements and noneruptive crustal deformations in the Phlegrean Fields caldera, Italy , 2006 .

[75]  J. Mori,et al.  Seismic and ground deformation crises at Rabaul Caldera: Prelude to an eruption? , 1984 .

[76]  R. Symonds,et al.  Magmatic gas scrubbing: implications for volcano monitoring , 2001 .

[77]  L. Civetta,et al.  B/Nb and δ11B systematics in the Phlegrean Volcanic District, Italy , 2004 .

[78]  M. Rosi,et al.  The phlegraean fields: Structural evolution, volcanic history and eruptive mechanisms , 1983 .

[79]  G. Orsi,et al.  Volcanic hazard assessment at the restless Campi Flegrei caldera , 2004 .