Multi‐sensor fusion for the determination of several soil properties in the Yangtze River Delta, China

D . X u a , R . Z h a o a, S . L i a , S . C h e n b,c , Q . J i a n g a,d, L . Z h o u a & Z . S h i a,e aInstitute of Agricultural Remote Sensing and Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China, bINRA, Unité InfoSol, 45075 Orléans, France, cUMR SAS, INRA, Agrocampus Ouest, 35042 Rennes, France, dCollege of Information Engineering, Tarim University, Alar 843300, China, and eKey Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China

[1]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[2]  Chris Sharman,et al.  Novel Proximal Sensing for Monitoring Soil Organic C Stocks and Condition. , 2017, Environmental science & technology.

[3]  Richard Webster,et al.  Predicting soil properties from the Australian soil visible–near infrared spectroscopic database , 2012 .

[4]  Kang He,et al.  Assessment of important soil properties related to Chinese Soil Taxonomy based on vis-NIR reflectance spectroscopy , 2018, Comput. Electron. Agric..

[5]  Somsubhra Chakraborty,et al.  Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH) , 2014 .

[6]  R. M. Lark,et al.  The relationship between diffuse spectral reflectance of the soil and its cation exchange capacity is scale-dependent , 2010 .

[7]  Taesam Kim,et al.  Laser-Induced Breakdown Spectroscopy , 2012 .

[8]  Tiezhu Shi,et al.  Prediction of low heavy metal concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy , 2014 .

[9]  S. Clegg,et al.  Intact Soil Core Total, Inorganic, and Organic Carbon Measurement Using Laser‐Induced Breakdown Spectroscopy , 2011 .

[10]  Budiman Minasny,et al.  An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties , 2016 .

[11]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[12]  L. Buydens,et al.  Development of robust calibration models in near infra-red spectrometric applications , 2000 .

[13]  Dean Abbott,et al.  Applied Predictive Analytics: Principles and Techniques for the Professional Data Analyst , 2014 .

[14]  Ron Wehrens,et al.  The pls Package: Principal Component and Partial Least Squares Regression in R , 2007 .

[15]  Sergei V. Kukhlevsky,et al.  Femtosecond laser spectrochemical analysis of plant samples , 2005 .

[16]  R. V. Rossel,et al.  Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties , 2006 .

[17]  S. M. Ruano,et al.  A rapid field procedure for screening trace elements in polluted soil using portable X-ray fluorescence (PXRF) , 2010 .

[18]  Yi Peng,et al.  Comparing predictive ability of laser-induced breakdown spectroscopy to visible near-infrared spectroscopy for soil property determination , 2017 .

[19]  R. V. Rossel,et al.  Visible and near infrared spectroscopy in soil science , 2010 .

[20]  P. Vitousek,et al.  Significant Acidification in Major Chinese Croplands , 2010, Science.

[21]  Robin Gebbers,et al.  Precision Agriculture and Food Security , 2010, Science.

[22]  H. S. Mahmood,et al.  Sensing soil properties in the laboratory, in situ, and on-Line: A review , 2012 .

[23]  Alain Dassargues,et al.  Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging , 2008 .

[24]  Zhou Shi,et al.  Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution , 2017, PloS one.

[25]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[26]  Keith D. Shepherd,et al.  Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring , 2015 .

[27]  Qiuxiao Chen,et al.  Revealing the scale-specific controls of soil organic matter at large scale in Northeast and North China Plain , 2016 .

[28]  P. Bloom,et al.  Diffuse Reflectance and Transmission Fourier Transform Infrared (DRIFT) Spectroscopy of Humic and Fulvic Acids , 1989 .

[29]  Zhou Shi,et al.  In situ measurements of organic carbon in soil profiles using vis-NIR spectroscopy on the Qinghai-Tibet plateau. , 2015, Environmental science & technology.

[30]  Adrian E. Raftery,et al.  Bayesian Model Averaging: A Tutorial , 2016 .

[31]  Dandan Wang,et al.  Synthesized use of VisNIR DRS and PXRF for soil characterization: Total carbon and total nitrogen☆ , 2015 .

[32]  D. Gardiner,et al.  Soils in Our Environment , 1995 .

[33]  Jez Willian Batista Braga,et al.  Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils , 2009 .

[34]  David C. Weindorf,et al.  Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture , 2011 .

[35]  R. V. Rossel,et al.  Assessment of soil properties in situ using a prototype portable MIR spectrometer in two agricultural fields , 2016 .

[36]  Shanqin Wang,et al.  Prediction of Soil Texture Using FT-NIR Spectroscopy and PXRF Spectrometry With Data Fusion , 2013 .

[37]  S. Wold,et al.  The multivariate calibration problem in chemistry solved by the PLS method , 1983 .

[38]  R. A. Romano,et al.  Laser-induced breakdown spectroscopy to determine soil texture: A fast analytical technique , 2016 .