Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption

[1]  G. Sposito The Chemistry of Soils , 2008 .

[2]  J. Banfield,et al.  Nanoparticulate Iron Oxide Minerals in Soils and Sediments: Unique Properties and Contaminant Scavenging Mechanisms , 2005 .

[3]  W. Forsling,et al.  Surface complex characteristics of synthetic maghemite and hematite in aqueous suspensions. , 2005, Journal of colloid and interface science.

[4]  G. Pacchioni,et al.  Single electron traps at the surface of polycrystalline MgO: assignment of the main trapping sites. , 2005, The journal of physical chemistry. B.

[5]  Michael F. Hochella,et al.  Direct observation of heavy metal-mineral association from the Clark Fork River Superfund Complex: Implications for metal transport and bioavailability , 2005 .

[6]  A. L. Crumbliss,et al.  Coordination Chemistry and Redox Processes in Siderophore-Mediated Iron Transport , 2005 .

[7]  A. Putnis,et al.  Environmentally important, poorly crystalline Fe/Mn hydrous oxides: Ferrihydrite and a possibly new vernadite-like mineral from the Clark Fork River Superfund Complex , 2005 .

[8]  J. Rustad,et al.  The influence of edge sites on the development of surface charge on goethite nanoparticles: A molecular dynamics investigation , 2005 .

[9]  A. S. Madden,et al.  A test of geochemical reactivity as a function of mineral size: Manganese oxidation promoted by hematite nanoparticles , 2005 .

[10]  Benjamin Gilbert,et al.  Molecular-Scale Processes Involving Nanoparticulate Minerals in Biogeochemical Systems , 2005 .

[11]  Peter J. Eng,et al.  Structure and reactivity of the hydrated hematite (0001) surface , 2004 .

[12]  Jianqi Li,et al.  Particle-Size-Dependent Distribution of Carboxylate Adsorption Sites on TiO2 Nanoparticle Surfaces: Insights into the Surface Modification of Nanostructured TiO2 Electrodes , 2004 .

[13]  J. Hanson,et al.  Nanostructured oxides in chemistry: characterization and properties. , 2004, Chemical reviews.

[14]  K. Rosso,et al.  Adatom Fe(III) on the hematite surface: Observation of a key reactive surface species , 2004, Geochemical transactions.

[15]  C. Peacock,et al.  Copper(II) sorption onto goethite, hematite and lepidocrocite: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy , 2004 .

[16]  J. Amonette,et al.  Copper Sorption Mechanisms on Smectites , 2004 .

[17]  E. Wimmer,et al.  Ab initio thermodynamics of oxide surfaces: O 2 on Fe 2 O 3 (0001) , 2004 .

[18]  M. Kramer,et al.  Anomalous temperature-dependent transport in YbNi2B2C and its correlation to microstructural features , 2003, cond-mat/0309686.

[19]  M. Schoonen,et al.  Characterization of the structure and the surface reactivity of a marcasite thin film , 2003 .

[20]  M. Schoonen,et al.  A mechanism for the production of hydroxyl radical at surface defect sites on pyrite , 2003 .

[21]  K. Rosso,et al.  The structure of hematite (α-Fe2O3) (001) surfaces in aqueous media: scanning tunneling microscopy and resonant tunneling calculations of coexisting O and Fe terminations , 2003 .

[22]  Jun Zhang,et al.  Surface structure of α-Fe2O3 nanocrystal observed by O K-edge X-ray absorption spectroscopy , 2003 .

[23]  Tijana Rajh,et al.  Surface Restructuring of Nanoparticles: An Efficient Route for Ligand−Metal Oxide Crosstalk , 2002 .

[24]  T. Rajh,et al.  Fe2O3 Nanoparticle Structures Investigated by X-ray Absorption Near-Edge Structure, Surface Modifications, and Model Calculations , 2002 .

[25]  M. Hochella Nanoscience and technology: the next revolution in the Earth sciences , 2002 .

[26]  Renata E. Hari,et al.  Adsorption of Cu, Cd, and Ni on goethite in the presence of natural groundwater ligands. , 2002, Environmental science & technology.

[27]  D. Schulze,et al.  Soil mineralogy with environmental applications. , 2002 .

[28]  G. A. Parks,et al.  Sorption of Trace Elements on Mineral Surfaces: Modern Perspectives from Spectroscopic Studies, and Comments on Sorption in the Marine Environment , 2001 .

[29]  S. Yiacoumi,et al.  Modeling kinetics of copper uptake by inorganic colloids under high surface coverage conditions , 2001 .

[30]  K. Rosso,et al.  Step edges on galena (100): Probing the basis for defect driven surface reactivity at the atomic scale , 2001 .

[31]  D. Sayers,et al.  Molecular scale characteristics of Cu(II) bonding in goethite–humate complexes , 2001 .

[32]  D. Sparks,et al.  Kinetic controls on Cu and Pb sorption by ferrihydrite. , 2001, Environmental science & technology.

[33]  K. Rosso Structure and Reactivity of Semiconducting Mineral Surfaces: Convergence of Molecular Modeling and Experiment , 2001 .

[34]  G. Waychunas Structure, Aggregation and Characterization of Nanoparticles , 2001 .

[35]  C. Eggleston,et al.  The depletion and regeneration of dissolution-active sites at the mineral-water interface: II. regeneration of active sites on @a-Fe , 2000 .

[36]  K. Rosso,et al.  Surface defects and self-diffusion on pyrite {100}: An ultra-high vacuum scanning tunneling microscopy and theoretical modeling study , 2000 .

[37]  V. P. Ivanov,et al.  Role of defect structure in structural sensitivity of the oxidation reactions catalyzed by dispersed transition metal oxides , 2000 .

[38]  H. Knözinger Catalysis on Oxide Surfaces , 2000, Science.

[39]  G. A. Parks,et al.  XAFS study of Cu model compounds and Cu2+ sorption products on amorphous SiO2, γ-Al2O3, and anatase , 2000 .

[40]  L. Criscenti,et al.  The role of electrolyte anions (ClO 4 (super -) , NO 3 (super -) , and Cl (super -) ) in divalent metal (M (super 2+) ) adsorption on oxide and hydroxide surfaces in salt solutions , 1999 .

[41]  Karthikeyan.,et al.  Surface Complexation Modeling of Copper Sorption by Hydrous Oxides of Iron and Aluminum. , 1999, Journal of colloid and interface science.

[42]  A. Putnis,et al.  A TEM study of samples from acid mine drainage systems: metal-mineral association with implications for transport , 1999 .

[43]  Ruben Kretzschmar,et al.  Competitive sorption of copper and lead at the oxide-water interface: Implications for surface site density , 1999 .

[44]  C. Eggleston The surface structure of α-Fe2O3 (001) by scanning tunneling microscopy: Implications for interfacial electron transfer reactions , 1999 .

[45]  S. Shaikhutdinov,et al.  Oxygen pressure dependence of the α-Fe2O3(0001) surface structure , 1999 .

[46]  F. Livens,et al.  Reactions of copper and cadmium ions in aqueous solution with goethite, lepidocrocite, mackinawite, and pyrite , 1999 .

[47]  Karthikeyan.,et al.  Role of Surface Precipitation in Copper Sorption by the Hydrous Oxides of Iron and Aluminum. , 1999, Journal of colloid and interface science.

[48]  Jinho Jung,et al.  COMPARATIVE STUDY OF CU2+ ADSORPTION ON GOETHITE, HEMATITE AND KAOLINITE :MECHANISTIC MODELING APPROACH , 1998 .

[49]  Gordon E. Brown,et al.  Reaction of water vapor with α-Al2O3(0001) and α-Fe2O3(0001) surfaces : synchrotron X-ray photoemission studies and thermodynamic calculations , 1998 .

[50]  J. Rustad,et al.  Interaction of water with the (1×1) and (2×1) surfaces of α-Fe2O3(012) , 1998 .

[51]  Morales,et al.  Interfacial and Rheological Characteristics of Maghemite Aqueous Suspensions. , 1998, Journal of colloid and interface science.

[52]  P. Liu,et al.  Reaction of water with MgO(100) surfaces. Part II : Synchrotron photoemission studies of defective surfaces , 1998 .

[53]  C. Eggleston,et al.  Active Sites and the Non-Steady-State Dissolution of Hematite , 1998 .

[54]  M. Scheffler,et al.  The hematite (Alpha-Fe_2O_3)(0001) surface: Evidence for domains of distinct chemistry , 1998, cond-mat/9807202.

[55]  P. Venema,et al.  Intrinsic proton affinity of reactive surface groups of metal(hydr)oxides: application to iron(hydr)oxides. , 1998 .

[56]  G. Thornton,et al.  Scanning tunnelling microscopy studies of α-Fe2O3(0001) , 1998 .

[57]  Lövgren,et al.  In Situ Voltammetric Determinations of Metal Ions in Goethite Suspensions: Single Metal Ion Systems. , 1997, Journal of colloid and interface science.

[58]  Zhiyu Wang,et al.  XAFS Studies of Surface Structures of TiO2 Nanoparticles and Photocatalytic Reduction of Metal Ions , 1997 .

[59]  Nita Sahai,et al.  Solvation and electrostatic model for specific electrolyte adsorption , 1997 .

[60]  K. Xia,et al.  Studies of the nature of Cu2+ and Pb2+ binding sites in soil humic substances using X-ray absorption spectroscopy , 1997 .

[61]  J. Rimstidt,et al.  Linking microscopic and macroscopic data for heterogeneous reactions illustrated by the oxidation of manganese (II) at mineral surfaces , 1997 .

[62]  E. Aprá,et al.  The electronic structure of hematite {001} surfaces: Applications to the interpretation of STM images and heterogeneous surface reactions , 1996 .

[63]  Nita Sahai,et al.  Theoretical prediction of single-site surface-protonation equilibrium constants for oxides and silicates in water , 1996 .

[64]  B. D. Kay,et al.  The adsorption and desorption of water on single crystal MgO(100): The role of surface defects , 1996 .

[65]  D. Vaughan,et al.  Adsorption of Cu(II) on the (0001) plane of mica: A REFLEXAFS and XPS study , 1996 .

[66]  M. Hochella,et al.  The chemistry of hematite 001 surfaces , 1996 .

[67]  D. Sparks Environmental Soil Chemistry , 1995 .

[68]  C. Pecharromán,et al.  The infrared dielectric properties of maghemite, γ-Fe2O3, from reflectance measurement on pressed powders , 1995 .

[69]  J. T. Ranney,et al.  The Surface Science of Metal Oxides , 1995 .

[70]  M. Hochella,et al.  Manganese (II) oxidation at mineral surfaces: A microscopic and spectroscopic study , 1994 .

[71]  D. Sparks,et al.  Rapid Kinetics of Cu(II) Adsorption/Desorption on Goethite. , 1994, Environmental science & technology.

[72]  A. Rose,et al.  Adsorption of Cu, Pb, Zn, Co, Ni, and Ag on goethite and hematite; a control on metal mobilization from red beds into stratiform copper deposits , 1993 .

[73]  Haruo Watanabe,et al.  Specific Acidities of the Surface Hydroxyl Groups on Maghemite , 1993 .

[74]  J. Bowles Iron Oxides in the Laboratory , 1992, Mineralogical Magazine.

[75]  J. Drever,et al.  Aquatic Chemical Kinetics , 1991 .

[76]  M. Hochella CHAPTER 3. ATOMIC STRUCTURE, MICROTOPOGRAPHY, COMPOSITION, AND REACTIVITY OF MINERAL SURFACES , 1990 .

[77]  M. McBride Reactions controlling heavy metal solubility in soils , 1989 .

[78]  W. Stumm Aquatic surface chemistry : chemical processes at the particle-water interface , 1987 .

[79]  Haruo Watanabe,et al.  The point of zero charge and the isoelectric point of γ-Fe2O3 and α-Fe2O3 , 1986 .

[80]  M. McBride,et al.  Cu2+ Interaction with Microcrystalline Gibbsite. Evidence for Oriented Chemisorbed Copper Ions , 1984 .

[81]  A. Kabata-Pendias Trace elements in soils and plants , 1984 .

[82]  M. Padmanabham Adsorption-desorption behaviour of copper(II) at the goethite-solution interface , 1983 .

[83]  R. James,et al.  Copper reactions with inorganic components of soils including uptake by oxide and silicate minerals , 1981 .

[84]  F. Morel,et al.  Sorption of Copper and Lead by Hydrous Ferric Oxide , 1980 .

[85]  Keu-Hong Kim,et al.  Kinetics and mechanisms of the oxidation of carbon monoxide on iron oxide (.alpha.-Fe2O3) , 1979 .

[86]  T. Pinnavaia,et al.  Stereochemistry of hydrated copper(II) ions on the interlamellar surfaces of layer silicates. Electron spin resonance study , 1973 .

[87]  T. Healy,et al.  Adsorption of hydrolyzable metal ions at the oxide—water interface. III. A thermodynamic model of adsorption , 1972 .