A Bayesian Mixture Approach to Modeling Spatial Activation Patterns in Multisite fMRI Data

We propose a probabilistic model for analyzing spatial activation patterns in multiple functional magnetic resonance imaging (fMRI) activation images such as repeated observations on an individual or images from different individuals in a clinical study. Instead of taking the traditional approach of voxel-by-voxel analysis, we directly model the shape of activation patterns by representing each activation cluster in an image as a Gaussian-shaped surface. We assume that there is an unknown true template pattern and that each observed image is a noisy realization of this template. We model an individual image using a mixture of experts model with each component representing a spatial activation cluster. Taking a nonparametric Bayesian approach, we use a hierarchical Dirichlet process to extract common activation clusters from multiple images and estimate the number of such clusters automatically. We further extend the model by adding random effects to the shape parameters to allow for image-specific variation in the activation patterns. Using a Bayesian framework, we learn the shape parameters for both image-level activation patterns and the template for the set of images by sampling from the posterior distribution of the parameters. We demonstrate our model on a dataset collected in a large multisite fMRI study.

[1]  N. Hartvig A stochastic geometry model for fMRI data , 1999 .

[2]  Polina Golland,et al.  From Spatial Regularization to Anatomical Priors in fMRI Analysis , 2005, IPMI.

[3]  Jessica A. Turner,et al.  Parametric Response Surface Models for Analysis of Multi-site fMRI Data , 2005, MICCAI.

[4]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[5]  Ghassan Hamarneh,et al.  Random Walker Based Estimation and Spatial Analysis of Probabilistic fMRI Activation Maps , 2009, MICCAI 2009.

[6]  B. Schölkopf,et al.  Hierarchical Dirichlet Processes with Random Effects , 2007 .

[7]  Brian Caffo,et al.  A Bayesian hierarchical framework for spatial modeling of fMRI data , 2008, NeuroImage.

[8]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[9]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[10]  Gregory G. Brown,et al.  Reproducibility of functional MR imaging: preliminary results of prospective multi-institutional study performed by Biomedical Informatics Research Network. , 2005, Radiology.

[11]  Geoffrey E. Hinton,et al.  An Alternative Model for Mixtures of Experts , 1994, NIPS.

[12]  Simon Osindero,et al.  An Alternative Infinite Mixture Of Gaussian Process Experts , 2005, NIPS.

[13]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[14]  M. Escobar,et al.  Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[15]  Geert Molenberghs,et al.  Random Effects Models for Longitudinal Data , 2010 .

[16]  Jean-Francois Mangin,et al.  Structural Analysis of fMRI Data Revisited: Improving the Sensitivity and Reliability of fMRI Group Studies , 2007, IEEE Transactions on Medical Imaging.

[17]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[18]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[19]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[20]  Gary H. Glover,et al.  Reducing interscanner variability of activation in a multicenter fMRI study: Controlling for signal-to-fluctuation-noise-ratio (SFNR) differences , 2006, NeuroImage.

[21]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[22]  Padhraic Smyth,et al.  Model selection for probabilistic clustering using cross-validated likelihood , 2000, Stat. Comput..

[23]  Carl E. Rasmussen,et al.  The Infinite Gaussian Mixture Model , 1999, NIPS.

[24]  Gregory G. Brown,et al.  r Human Brain Mapping 29:958–972 (2008) r Test–Retest and Between-Site Reliability in a Multicenter fMRI Study , 2022 .

[25]  Karl J. Friston,et al.  Mixtures of general linear models for functional neuroimaging , 2003, IEEE Transactions on Medical Imaging.

[26]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[27]  Hal S. Stern,et al.  A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fMRI Data , 2006, MICCAI.

[28]  Martin J. McKeown,et al.  Spatial Characterization of fMRI Activation Maps Using Invariant 3-D Moment Descriptors , 2009, IEEE Transactions on Medical Imaging.

[29]  Carl E. Rasmussen,et al.  Infinite Mixtures of Gaussian Process Experts , 2001, NIPS.

[30]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[31]  Martin J. McKeown,et al.  SPHARM-Based Spatial fMRI Characterization With Intersubject Anatomical Variability Reduction , 2008, IEEE Journal of Selected Topics in Signal Processing.

[32]  Thomas E. Nichols,et al.  Validating cluster size inference: random field and permutation methods , 2003, NeuroImage.

[33]  Guillaume Flandin,et al.  Bayesian fMRI data analysis with sparse spatial basis function priors , 2007, NeuroImage.

[34]  Grégory Operto,et al.  Surface-Based Structural Group Analysis of fMRI Data , 2008, MICCAI.