A stochastic Evans-Aronsson problem

[1]  Lawrence C. Evans,et al.  Adjoint and Compensated Compactness Methods for Hamilton–Jacobi PDE , 2010 .

[2]  Peter E. Caines,et al.  Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle , 2006, Commun. Inf. Syst..

[3]  Ricardo Mañé,et al.  Generic properties and problems of minimizing measures of Lagrangian systems , 1996 .

[4]  J. Dieudonne Foundations of Modern Analysis , 1969 .

[5]  Lawrence C. Evans,et al.  Further PDE methods for weak KAM theory , 2009 .

[6]  Renato Iturriaga,et al.  MATHER MEASURES SELECTED BY AN APPROXIMATION SCHEME , 2010 .

[7]  Renato Iturriaga,et al.  ON THE STOCHASTIC AUBRY-MATHER THEORY , 2005 .

[8]  Olivier Guéant,et al.  Mean Field Games and Applications , 2011 .

[9]  P. Lions,et al.  Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .

[10]  Lawrence C. Evans,et al.  Some new PDE methods for weak KAM theory , 2003 .

[11]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[12]  Diogo Aguiar Gomes,et al.  A stochastic analogue of Aubry-Mather theory , 2001 .

[13]  J. Mather,et al.  Action minimizing invariant measures for positive definite Lagrangian systems , 1991 .

[14]  Kaizhi Wang Action minimizing stochastic invariant measures for a class of Lagrangian systems , 2008 .

[15]  Minyi Huang,et al.  Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized $\varepsilon$-Nash Equilibria , 2007, IEEE Transactions on Automatic Control.

[16]  P. Lions,et al.  Mean field games , 2007 .