Complete maps of molecular‐loop conformational spaces

This paper presents a numerical method to compute all possible conformations of distance-constrained molecular loops, i.e., loops where some interatomic distances are held fixed, while others can vary. The method is general (it can be applied to single or multiple intermingled loops of arbitrary topology) and complete (it isolates all solutions, even if they form positive-dimensional sets). Generality is achieved by reducing the problem to finding all embeddings of a set of points constrained by pairwise distances, which can be formulated as computing the roots of a system of Cayley-Menger determinants. Completeness is achieved by expressing these determinants in Bernstein form and using a numerical algorithm that exploits such form to bound all root locations at any desired precision. The method is readily parallelizable, and the current implementation can be run on single- or multiprocessor machines. Experiments are included that show the method's performance on rigid loops, mobile loops, and multiloop molecules. In all cases, complete maps including all possible conformations are obtained, thus allowing an exhaustive analysis and visualization of all pseudo-rotation paths between different conformations satisfying loop closure.

[1]  Federico Thomas,et al.  A Concise Bézier Clipping Technique for Solving Inverse Kinematics Problems , 2000 .

[2]  Rida T. Farouki,et al.  On the numerical condition of polynomials in Bernstein form , 1987, Comput. Aided Geom. Des..

[3]  A. Morgan,et al.  Solving the Kinematics of the Most General Six- and Five-Degree-of-Freedom Manipulators by Continuation Methods , 1985 .

[4]  Juan Jesús Pérez,et al.  Complete maps of molecular‐loop conformational spaces , 2007, J. Comput. Chem..

[5]  Bernard Mourrain,et al.  Computer Algebra Methods for Studying and Computing Molecular Conformations , 1999, Algorithmica.

[6]  Karl Menger,et al.  New Foundation of Euclidean Geometry , 1931 .

[7]  Nicholas M. Patrikalakis,et al.  Computation of the solutions of nonlinear polynomial systems , 1993, Comput. Aided Geom. Des..

[8]  Harold A. Scheraga,et al.  Analysis of the Contribution of Internal Vibrations to the Statistical Weights of Equilibrium Conformations of Macromolecules , 1969 .

[9]  Federico Thomas,et al.  On the Trilaterable Six-Degree-of-Freedom Parallel and Serial Manipulators , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[10]  Timothy F. Havel Distance Geometry: Theory, Algorithms, and Chemical Applications , 2002 .

[11]  Federico Thomas,et al.  On the computation of the direct kinematics of parallel spherical mechanisms using Bernstein polynomials , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[12]  W. Whiteley Counting out to the flexibility of molecules , 2005, Physical biology.

[13]  Jadran Lenarčič,et al.  Advances in Robot Kinematics , 2000 .

[14]  Adrian A Canutescu,et al.  Cyclic coordinate descent: A robotics algorithm for protein loop closure , 2003, Protein science : a publication of the Protein Society.

[15]  E. Primrose On the input-output equation of the general 7R-mechanism , 1986 .

[16]  Donald Lee Pieper The kinematics of manipulators under computer control , 1968 .

[17]  Gordon M. Crippen,et al.  Distance Geometry and Molecular Conformation , 1988 .

[18]  C. Levinthal,et al.  Predicting antibody hypervariable loop conformation. I. Ensembles of random conformations for ringlike structures , 1987, Biopolymers.

[19]  Gordon M. Crippen,et al.  Exploring the conformation space of cycloalkanes by linearized embedding , 1992 .

[20]  Ron Goldman,et al.  Improving conformational searches by geometric screening , 2005, Bioinform..

[21]  K. Dill,et al.  Resultants and Loop Closure , 2006 .

[22]  D. Jacobs,et al.  Protein flexibility and dynamics using constraint theory. , 2001, Journal of molecular graphics & modelling.

[23]  N. Deo,et al.  Computational experience with a parallel algorithm for tetrangle inequality bound smoothing , 1999, Bulletin of mathematical biology.

[24]  H. Scheraga,et al.  Solution of the embedding problem and decomposition of symmetric matrices. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Hong Y. Lee,et al.  A new vector theory for the analysis of spatial mechanisms , 1988 .

[26]  Vadim Shapiro,et al.  Box-bisection for solving second-degree systems and the problem of clustering , 1987, TOMS.

[27]  D. Jacobs,et al.  Protein flexibility predictions using graph theory , 2001, Proteins.

[28]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[29]  Chaok Seok,et al.  A kinematic view of loop closure , 2004, J. Comput. Chem..

[30]  M J Sippl,et al.  Cayley-Menger coordinates. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[31]  A. L. Dixon The Eliminant of Three Quantics in two Independent Variables , 1909 .

[32]  Harold A. Scheraga,et al.  Exact analytical loop closure in proteins using polynomial equations , 1999, J. Comput. Chem..

[33]  J. M. Oshorn Proc. Nat. Acad. Sei , 1978 .

[34]  S. A. Stoeter,et al.  Proceedings - IEEE International Conference on Robotics and Automation , 2003 .

[35]  P. Kollman,et al.  Encyclopedia of computational chemistry , 1998 .

[36]  Leonard M. Blumenthal,et al.  Theory and applications of distance geometry , 1954 .

[37]  J. Duffy,et al.  A forward displacement analysis of a class of stewart platforms , 1989, J. Field Robotics.

[38]  Bernard Roth,et al.  On the Design of Computer Controlled Manipulators , 1974 .

[39]  Ileana Streinu,et al.  The Number of Embeddings of Minimally Rigid Graphs , 2004, Discret. Comput. Geom..

[40]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[41]  J. Canny,et al.  Efficient incremental algorithms for the sparse resultant and the mixed volume , 1995 .

[42]  B. Roth,et al.  Inverse Kinematics of the General 6R Manipulator and Related Linkages , 1993 .

[43]  Hélio F. Dos Santos,et al.  Ab initio conformational analysis of cyclooctane molecule , 1998, J. Comput. Chem..

[44]  Arthur Cayley,et al.  The Collected Mathematical Papers: On a Theorem in the Geometry of Position , 2009 .

[45]  N. Go,et al.  Ring Closure and Local Conformational Deformations of Chain Molecules , 1970 .

[46]  Dinesh Manocha,et al.  Efficient inverse kinematics for general 6R manipulators , 1994, IEEE Trans. Robotics Autom..

[47]  István Kolossváry,et al.  Comprehensive Conformational Analysis of the Four- to Twelve-Membered Ring Cycloalkanes: Identification of the Complete Set of Interconversion Pathways on the MM2 Potential Energy Hypersurface. , 1993 .

[48]  Timothy F. Havel,et al.  Shortest-path problems and molecular conformation , 1988, Discret. Appl. Math..

[49]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[50]  Harold A. Scheraga,et al.  Energy minimization of rigid-geometry polypeptides with exactly closed disulfide loops , 1997, J. Comput. Chem..

[51]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[52]  Carme Torras,et al.  A branch-and-prune solver for distance constraints , 2005, IEEE Transactions on Robotics.