Impact of the Organic Cation on the Optoelectronic Properties of Formamidinium Lead Triiodide.

Metal halide perovskites have proven to be excellent light-harvesting materials in photovoltaic devices whose efficiencies are rapidly improving. Here, we examine the temperature-dependent photon absorption, exciton binding energy, and band gap of FAPbI3 (thin film) and find remarkably different behavior across the β-γ phase transition compared with MAPbI3. While MAPbI3 has shown abrupt changes in the band gap and exciton binding energy, values for FAPbI3 vary smoothly over a range of 100-160 K in accordance with a more gradual transition. In addition, we find that the charge-carrier mobility in FAPbI3 exhibits a clear T-0.5 trend with temperature, in excellent agreement with theoretical predictions that assume electron-phonon interactions to be governed by the Fröhlich mechanism but in contrast to the T-1.5 dependence previously observed for MAPbI3. Finally, we directly observe intraexcitonic transitions in FAPbI3 at low temperature, from which we determine a low exciton binding energy of only 5.3 meV at 10 K.

[1]  C. Brabec,et al.  Assessing Temperature Dependence of Drift Mobility in Methylammonium Lead Iodide Perovskite Single Crystals , 2018 .

[2]  P. Umari,et al.  Infrared Dielectric Screening Determines the Low Exciton Binding Energy of Metal-Halide Perovskites. , 2018, The journal of physical chemistry letters.

[3]  Jay B. Patel,et al.  Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process , 2018, Nature Communications.

[4]  M. Bawendi,et al.  Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells , 2018, Energy & Environmental Science.

[5]  Jay B. Patel,et al.  Photocurrent Spectroscopy of Perovskite Solar Cells Over a Wide Temperature Range from 15 to 350 K. , 2018, The journal of physical chemistry letters.

[6]  Jay B. Patel,et al.  Large-Area, Highly Uniform Evaporated Formamidinium Lead Triiodide Thin Films for Solar Cells , 2017 .

[7]  M. Kanatzidis,et al.  Universal Dynamics of Molecular Reorientation in Hybrid Lead Iodide Perovskites. , 2017, Journal of the American Chemical Society.

[8]  N. Renaud,et al.  Temperature Dependent Charge Carrier Dynamics in Formamidinium Lead Iodide Perovskite , 2017, The journal of physical chemistry. C, Nanomaterials and interfaces.

[9]  David B. Geohegan,et al.  Bromine substitution improves excited-state dynamics in mesoporous mixed halide perovskite films. , 2017, Nanoscale.

[10]  Jay B. Patel,et al.  Photon Reabsorption Masks Intrinsic Bimolecular Charge-Carrier Recombination in CH3NH3PbI3 Perovskite. , 2017, Nano letters.

[11]  Wei‐Liang Chen,et al.  Origin of long lifetime of band-edge charge carriers in organic–inorganic lead iodide perovskites , 2017, Proceedings of the National Academy of Sciences.

[12]  Maria Antonietta Loi,et al.  Exciton Recombination in Formamidinium Lead Triiodide: Nanocrystals versus Thin Films. , 2017, Small.

[13]  L. Herz Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits , 2017 .

[14]  J. Frost Calculating polaron mobility in halide perovskites , 2017, 1704.05404.

[15]  G. Jakob,et al.  Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1 from a metallic spintronic emitter , 2017, 1703.09970.

[16]  Kai Zhu,et al.  Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells , 2017, Nature Energy.

[17]  M. Kovalenko,et al.  Dismantling the “Red Wall” of Colloidal Perovskites: Highly Luminescent Formamidinium and Formamidinium–Cesium Lead Iodide Nanocrystals , 2017, ACS nano.

[18]  Jay B. Patel,et al.  Influence of Interface Morphology on Hysteresis in Vapor‐Deposited Perovskite Solar Cells , 2017 .

[19]  Jay B. Patel,et al.  Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties , 2017 .

[20]  M. Kanatzidis,et al.  Reentrant Structural and Optical Properties and Large Positive Thermal Expansion in Perovskite Formamidinium Lead Iodide. , 2016, Angewandte Chemie.

[21]  M. Yoon,et al.  Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite , 2016, Science Advances.

[22]  Hannah J. Joyce,et al.  A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy , 2016 .

[23]  Feliciano Giustino,et al.  Electron–phonon coupling in hybrid lead halide perovskites , 2016, Nature Communications.

[24]  Laura M. Herz,et al.  Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites. , 2016, Annual review of physical chemistry.

[25]  M. Johnston,et al.  Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies. , 2016, Accounts of chemical research.

[26]  M. Kanatzidis,et al.  Dielectric and Thermodynamic Signatures of Low-Temperature Glassy Dynamics in the Hybrid Perovskites CH3NH3PbI3 and HC(NH2)2PbI3. , 2016, The journal of physical chemistry letters.

[27]  Towfiq Ahmed,et al.  Phonon Mode Transformation Across the Orthohombic-Tetragonal Phase Transition in a Lead Iodide Perovskite CH3NH3PbI3: A Terahertz Time-Domain Spectroscopy Approach. , 2016, The journal of physical chemistry letters.

[28]  J. Even,et al.  Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications , 2015, Light: Science & Applications.

[29]  M. Bonn,et al.  Phonon-Electron Scattering Limits Free Charge Mobility in Methylammonium Lead Iodide Perovskites. , 2015, The journal of physical chemistry letters.

[30]  M. Johnston,et al.  Charge‐Carrier Dynamics and Mobilities in Formamidinium Lead Mixed‐Halide Perovskites , 2015, Advanced materials.

[31]  H. Snaith,et al.  Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors , 2015, 1511.06507.

[32]  Jay B. Patel,et al.  Vibrational Properties of the Organic–Inorganic Halide Perovskite CH3NH3PbI3 from Theory and Experiment: Factor Group Analysis, First-Principles Calculations, and Low-Temperature Infrared Spectra , 2015 .

[33]  M. Mainas,et al.  Absorption F-sum rule for the exciton binding energy in methylammonium lead halide perovskites. , 2015, The journal of physical chemistry letters.

[34]  J. Luther,et al.  Observation of a hot-phonon bottleneck in lead-iodide perovskites , 2015, Nature Photonics.

[35]  M. Klaui,et al.  Efficient metallic spintronic emitters of ultrabroadband terahertz radiation , 2015, Nature Photonics.

[36]  Laura M. Herz,et al.  Temperature‐Dependent Charge‐Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films , 2015 .

[37]  A. Walsh,et al.  Cubic Perovskite Structure of Black Formamidinium Lead Iodide, α-[HC(NH2)2]PbI3, at 298 K , 2015, The Journal of Physical Chemistry Letters.

[38]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[39]  Shihe Yang,et al.  Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. , 2014, Angewandte Chemie.

[40]  Shuzi Hayase,et al.  Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. , 2014, Journal of the American Chemical Society.

[41]  M. Johnston,et al.  Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films , 2014 .

[42]  M. Johnston,et al.  Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3-xClx , 2014 .

[43]  Tonu Pullerits,et al.  Thermally Activated Exciton Dissociation and Recombination Control the Carrier Dynamics in Organometal Halide Perovskite. , 2014, The journal of physical chemistry letters.

[44]  P. Umari,et al.  Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. , 2014, Nano letters.

[45]  Guglielmo Lanzani,et al.  Excitons versus free charges in organo-lead tri-halide perovskites , 2014, Nature Communications.

[46]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[47]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[48]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[49]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[50]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[51]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[52]  Chennupati Jagadish,et al.  Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy , 2013, Nanotechnology.

[53]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[54]  F. Freimuth,et al.  Terahertz spin current pulses controlled by magnetic heterostructures. , 2012, Nature nanotechnology.

[55]  James Lloyd-Hughes,et al.  A Review of the Terahertz Conductivity of Bulk and Nano-Materials , 2012 .

[56]  J. Lloyd‐Hughes,et al.  A Review of the Terahertz Conductivity of Bulk and Nano-Materials , 2012, Journal of Infrared, Millimeter, and Terahertz Waves.

[57]  D. Chemla,et al.  Transient terahertz spectroscopy of excitons and unbound carriers in quasi two-dimensional electron-hole gases , 2008, 0809.2080.

[58]  D. Chemla,et al.  Femtosecond THz studies of intra‐excitonic transitions , 2008 .

[59]  David A. Ritchie,et al.  Terahertz magnetoconductivity of excitons and electrons in quantum cascade structures , 2008 .

[60]  Hee-Won Lee Matrix Elements and Cross Section of Raman Scattering by Atomic Hydrogen , 2007 .

[61]  Rupert Huber,et al.  Broadband terahertz study of excitonic resonances in the high-density regime in GaAs/AlxGa1-xAs quantum wells , 2005 .

[62]  I. Biaggio,et al.  Mobility of an electron in a multimode polar lattice , 1999 .

[63]  K. Kreher,et al.  Fundamentals of Semiconductors – Physics and Materials Properties , 1997 .

[64]  N. C. McGill,et al.  Energy levels of a neutral hydrogen-like system in a constant magnetic field of arbitrary strength , 1986 .

[65]  O. Knop,et al.  Cation rotation in methylammonium lead halides , 1985 .

[66]  R. Greene,et al.  Hydrogen‐Like Systems in Arbitrary Magnetic Fields A Variational Approch , 1979 .

[67]  R. J. Elliott,et al.  Intensity of Optical Absorption by Excitons , 1957 .

[68]  H. Fröhlich Electrons in lattice fields , 1954 .

[69]  J. Even,et al.  Close examination of the structure and dynamics of HC(NH 2 ) 2 PbI 3 by MD simulations and group theory , 2016 .

[70]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .