Approximate quantum and acoustic cloaking

At any energy E > 0, we construct a sequence of bounded potentials $V^E_{n}, n\in\N$, supported in an annular region $B_{out}\setminus B_{inn}$ in three-space, which act as approximate cloaks for solutions of Schr\"odinger's equation: For any potential $V_0\in L^\infty(B_{inn})$ such that E is not a Neumann eigenvalue of $-\Delta+V_0$ in $B_{inn}$, the scattering amplitudes $a_{V_0+V_n^E}(E,\theta,\omega)\to 0$ as $n\to\infty$. The $V^E_{n}$ thus not only form a family of approximately transparent potentials, but also function as approximate invisibility cloaks in quantum mechanics. On the other hand, for $E$ close to interior eigenvalues, resonances develop and there exist {\it almost trapped states} concentrated in $B_{inn}$. We derive the $V_n^E$ from singular, anisotropic transformation optics-based cloaks by a de-anisotropization procedure, which we call \emph{isotropic transformation optics}. This technique uses truncation, inverse homogenization and spectral theory to produce nonsingular, isotropic approximate cloaks. As an intermediate step, we also obtain approximate cloaking for a general class of equations including the acoustic equation.

[1]  C. Simader,et al.  Schrödinger operators with singular magnetic vector potentials , 1981 .

[2]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[3]  David R. Smith,et al.  Optical design of reflectionless complex media by finite embedded coordinate transformations. , 2007, Physical review letters.

[4]  Hongsheng Chen,et al.  Electromagnetic wave interactions with a metamaterial cloak. , 2007, Physical review letters.

[5]  Bohumír Opic,et al.  Hardy-type inequalities , 1990 .

[6]  Huanyang Chen,et al.  Electromagnetic wave manipulation by layered systems using the transformation media concept , 2008 .

[7]  Ines Gloeckner,et al.  Variational Methods for Structural Optimization , 2002 .

[8]  S. Guenneau,et al.  Achieving invisibility over a finite range of frequencies. , 2008, Optics express.

[9]  G. Allaire Homogenization and two-scale convergence , 1992 .

[10]  B. Simon Schrödinger operators with singular magnetic vector potentials , 1973 .

[11]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[12]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[13]  M. Qiu,et al.  Ideal cylindrical cloak: perfect but sensitive to tiny perturbations. , 2007, Physical review letters.

[14]  G. Uhlmann,et al.  Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. , 2007, Physical review letters.

[15]  R. Newton Construction of Potentials from the Phase Shifts at Fixed Energy , 1962 .

[16]  G. Uhlmann,et al.  Full-Wave Invisibility of Active Devices at All Frequencies , 2006, math/0611185.

[17]  A. Norris Acoustic cloaking theory , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  R. Novikov,et al.  Multidimensional inverse spectral problem for the equation —Δψ + (v(x) — Eu(x))ψ = 0 , 1988 .

[19]  A. Ward,et al.  Refraction and geometry in Maxwell's equations , 1996 .

[20]  David R. Smith,et al.  Scattering theory derivation of a 3D acoustic cloaking shell. , 2008, Physical review letters.

[21]  Gunther Uhlmann,et al.  Generic uniqueness for an inverse boundary value problem , 1991 .

[22]  R. Weder A rigorous analysis of high-order electromagnetic invisibility cloaks , 2007, 0711.0507.

[23]  G. Uhlmann,et al.  Improvement of cylindrical cloaking with the SHS lining. , 2007, Optics express.

[24]  P. Sabatier Asymptotic Properties of the Potentials in the Inverse‐Scattering Problem at Fixed Energy , 1966 .

[25]  Tosio Kato Perturbation theory for linear operators , 1966 .

[26]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[27]  Huanyang Chen,et al.  Electromagnetic wave manipulation using layered systems , 2008, 0805.1328.

[28]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .

[29]  Robert Lipton Homogenization and Field Concentrations in Heterogeneous Media , 2006, SIAM J. Math. Anal..

[30]  G. Milton The Theory of Composites , 2002 .

[31]  Gunther Uhlmann,et al.  Inverse boundary value problems and applications , 1992 .

[32]  U. Leonhardt,et al.  General relativity in electrical engineering , 2006, SPIE Optics + Optoelectronics.

[33]  S. Cummer,et al.  One path to acoustic cloaking , 2007 .

[34]  Matti Lassas,et al.  Anisotropic conductivities that cannot be detected by EIT. , 2003, Physiological measurement.

[35]  Sagun Chanillo,et al.  A problem in electrical prospection and a n-dimensional Borg-Levinson theorem , 1990 .

[36]  Matti Lassas,et al.  Comment on "Scattering Theory Derivation of a 3D Acoustic Cloaking Shell" , 2008, 0801.3279.

[37]  Matti Lassas,et al.  Approximate quantum cloaking and almost-trapped states. , 2008, Physical review letters.

[38]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[39]  Huanyang Chen,et al.  Acoustic cloaking in three dimensions using acoustic metamaterials , 2007 .

[40]  N. Engheta,et al.  Cloaking a sensor. , 2009, Physical review letters.

[41]  Herbert Koch,et al.  Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients , 2001 .

[42]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[43]  Piotr G.Grinevich,et al.  Transparent Potentials at Fixed Energy in Dimension Two. Fixed-Energy Dispersion Relations for the Fast Decaying Potentials , 1994, solv-int/9410003.

[44]  U. Leonhardt,et al.  Ambiguities in the scattering tomography for central potentials. , 2006, Physical review letters.

[45]  Yu Luo,et al.  Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations , 2007, 0712.2027.

[46]  Alain Damlamian,et al.  Two-Scale Convergence On Periodic Surfaces And Applications , 1995 .

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[48]  J. Sylvester,et al.  Ann-dimensional Borg-Levinson theorem , 1988 .

[49]  R. Novikov The inverse scattering problem at fixed energy for the three-dimensional Schrödinger equation with an exponentially decreasing potential , 1994 .

[50]  Huanyang Chen,et al.  Transformation media that rotate electromagnetic fields , 2007, physics/0702050.

[51]  Petri Ola,et al.  An inverse boundary value problem in electrodynamics , 1993 .

[52]  Matti Lassas,et al.  Maxwell's equations with a polarization independent wave velocity: direct and inverse problems , 2006 .

[53]  Matti Lassas,et al.  On nonuniqueness for Calderón’s inverse problem , 2003 .

[54]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[55]  Matti Lassas,et al.  Electromagnetic Wormholes via Handlebody Constructions , 2007, 0704.0914.

[56]  Matti Lassas,et al.  The Calderon problem for conormal potentials, I: Global uniqueness and reconstruction , 2001 .

[57]  J. Willis,et al.  On cloaking for elasticity and physical equations with a transformation invariant form , 2006 .

[58]  Shuang Zhang,et al.  Cloaking of matter waves. , 2008, Physical review letters.

[59]  H. Attouch Variational convergence for functions and operators , 1984 .

[60]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[61]  R. Kohn,et al.  Cloaking via change of variables in electric impedance tomography , 2008 .

[62]  Robert V. Kohn,et al.  Cloaking via change of variables for the Helmholtz equation , 2010 .

[63]  G. Uhlmann,et al.  Isotropic transformation optics: approximate acoustic and quantum cloaking , 2008, 0806.0085.

[64]  HARDY-TYPE INEQUALITIES , 2000 .

[65]  Yijun Feng,et al.  Electromagnetic cloaking by layered structure of homogeneous isotropic materials. , 2007, Optics express.

[66]  A. Nachman,et al.  Reconstructions from boundary measurements , 1988 .