A voltage-gated potassium channel, Kv3.1b, is expressed by a subpopulation of large pyramidal neurons in layer 5 of the macaque monkey cortex

[1]  M. Steriade Neocortical cell classes are flexible entities , 2004, Nature Reviews Neuroscience.

[2]  K. Rockland,et al.  Intrinsic collaterals of layer 6 meynert cells and functional columns in primate v1 , 2003, Neuroscience.

[3]  Keiichi Nagata,et al.  Kv3.4 subunits enhance the repolarizing efficiency of Kv3.1 channels in fast-spiking neurons , 2003, Nature Neuroscience.

[4]  P. Hof,et al.  Stereologic characterization and spatial distribution patterns of Betz cells in the human primary motor cortex. , 2003, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[5]  Chet C. Sherwood,et al.  Evolution of Specialized Pyramidal Neurons in Primate Visual and Motor Cortex , 2003, Brain, Behavior and Evolution.

[6]  K. Rockland,et al.  Axon collaterals of meynert cells diverge over large portions of area V1 in the macaque monkey , 2001, The Journal of comparative neurology.

[7]  Bernardo Rudy,et al.  Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing , 2001, Trends in Neurosciences.

[8]  A. Yamashita,et al.  Axon trajectories in local circuits of the primary motor cortex in the macaque monkey (Macaca fuscata) , 2001, Neuroscience Research.

[9]  J. Morrison,et al.  Numbers of Meynert and layer IVB cells in area V1: A stereologic analysis in young and aged macaque monkeys , 2000, The Journal of comparative neurology.

[10]  T. Hashikawa,et al.  Differential expression of γ‐aminobutyric acid type B receptor‐1a and ‐1b mRNA variants in GABA and non‐GABAergic neurons of the rat brain , 2000 .

[11]  T. Hashikawa,et al.  Differential expression of gamma-aminobutyric acid type B receptor-1a and -1b mRNA variants in GABA and non-GABAergic neurons of the rat brain. , 2000, The Journal of comparative neurology.

[12]  A. Reichenbach,et al.  Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations , 1999, Brain Research.

[13]  A. Erisir,et al.  Contributions of Kv3 Channels to Neuronal Excitability , 1999, Annals of the New York Academy of Sciences.

[14]  Hannah Monyer,et al.  Functional and Molecular Differences between Voltage-Gated K+ Channels of Fast-Spiking Interneurons and Pyramidal Neurons of Rat Hippocampus , 1998, The Journal of Neuroscience.

[15]  L. Gan,et al.  When, where, and how much? Expression of the Kv3.1 potassium channel in high-frequency firing neurons. , 1998, Journal of neurobiology.

[16]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[17]  T. Deerinck,et al.  Subcellular localization of the K+ channel subunit Kv3.1b in selected rat CNS neurons , 1997, Brain Research.

[18]  G. Leuba,et al.  Colocalization of parvalbumin, calretinin and calbindin D-28k in human cortical and subcortical visual structures , 1997, Journal of Chemical Neuroanatomy.

[19]  D. O'Dowd,et al.  Differential Expression of K4-AP Currents and Kv3.1 Potassium Channel Transcripts in Cortical Neurons that Develop Distinct Firing Phenotypes , 1997, The Journal of Neuroscience.

[20]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[21]  V. Bigl,et al.  Pyramidal cells ensheathed by perineuronal nets in human motor and somatosensory cortex. , 1996, Neuroreport.

[22]  J. Kaas,et al.  Parvalbumin-like immunoreactivity of layer V pyramidal cells in the motor and somatosensory cortex of adult primates , 1996, Brain Research.

[23]  W. B. Spatz,et al.  Morphology and connections of neurons in area 17 projecting to the extrastriate areas mt and 19DM and to the superior colliculus in the monkey Callithrix jacchus , 1995, The Journal of comparative neurology.

[24]  L. Wang,et al.  Electrophysiological and pharmacological characterization of a mammalian Shaw channel expressed in NIH 3T3 fibroblasts. , 1995, Journal of neurophysiology.

[25]  Mark Ellisman,et al.  The potassium channel subunit KV3.1b is localized to somatic and axonal membranes of specific populations of CNS neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  I. Darian‐Smith,et al.  Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. , 1994, Cerebral cortex.

[27]  J. B. Levitt,et al.  Substrates for Interlaminar Connections in Area V1 of Macaque Monkey Cerebral Cortex , 1994 .

[28]  C. Tanaka,et al.  Immunocytochemical localization of α-, βI-, βII- and γ-subspecies of protein kinase C in the motor and premotor cortices of the rhesus monkey , 1993, Neuroscience Research.

[29]  C. Tanaka,et al.  Immunocytochemical localization of alpha-, beta I-, beta II- and gamma-subspecies of protein kinase C in the motor and premotor cortices of the rhesus monkey. , 1993, Neuroscience research.

[30]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[31]  L. Kaczmarek,et al.  Expression of the mRNAs for the Kv3.1 potassium channel gene in the adult and developing rat brain. , 1992, Journal of neurophysiology.

[32]  W. Brown,et al.  Primary lateral sclerosis. Clinical features, neuropathology and diagnostic criteria. , 1992, Brain : a journal of neurology.

[33]  D. Schiffer,et al.  Chondroitin sulfate proteoglycan surrounds a subset of human and rat CNS neurons , 1991, Journal of neuroscience research.

[34]  J. Morrison,et al.  Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer's disease: II. Primary and secondary visual cortex , 1990, The Journal of comparative neurology.

[35]  D. V. van Essen,et al.  Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey , 1990, Visual Neuroscience.

[36]  D. Prince,et al.  Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features , 1990, The Journal of comparative neurology.

[37]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  A. Peters,et al.  Cytochrome oxidase patches and Meynert cells in monkey visual cortex , 1989, Neuroscience.

[39]  M. Glickstein,et al.  Corticopontine projection in the macaque: The distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei , 1985, The Journal of comparative neurology.

[40]  E G Jones,et al.  Neuronal populations stained with the monoclonal antibody Cat-301 in the mammalian cerebral cortex and thalamus , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  G Meyer,et al.  Forms and spatial arrangement of neurons in the primary motor cortex of man , 1987, The Journal of comparative neurology.

[42]  H. Kuypers,et al.  Collaterals of corticospinal and pyramidal fibres to the pontine grey demonstrated by a new application of the fluorescent fibre labelling technique , 1986, Brain Research.

[43]  G. Rizzolatti,et al.  Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey , 1985, Behavioural Brain Research.

[44]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[45]  M. Wong-Riley,et al.  Quantitative light and electron microscopic analysis of cytochrome oxidase‐rich zones in the striate cortex of the squirrel monkey , 1984, The Journal of comparative neurology.

[46]  B. Connors,et al.  Electrophysiological properties of neocortical neurons in vitro. , 1982, Journal of neurophysiology.

[47]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[48]  M. Brazier,et al.  Architectonics of the cerebral cortex , 1978 .

[49]  W. Precht The synaptic organization of the brain G.M. Shepherd, Oxford University Press (1975). 364 pp., £3.80 (paperback) , 1976, Neuroscience.

[50]  S. Palay,et al.  Meynert cells in the primate visual cortex , 1974, Journal of neurocytology.

[51]  E. Evarts RELATION OF DISCHARGE FREQUENCY TO CONDUCTION VELOCITY IN PYRAMIDAL TRACT NEURONS. , 1965, Journal of neurophysiology.

[52]  G. J. Romanes,et al.  The Neocortex of Macaca mulatta , 1948 .

[53]  Jelliffe Vergleichende Lokalisationslehre der Grosshirnrinde , 1910 .