Inverse size-dependent Stokes shift in strongly quantum confined CsPbBr3 perovskite nanoplates.

Colloidal semiconductor nanocrystals (NCs) are used as bright chromatic fluorophores for energy-efficient displays. We focus here on the size-dependent Stokes shift for CsPbBr3 nanocrystals. The Stokes shift, i.e., the difference between the wavelengths of absorption and emission maxima, is crucial for display application, as it controls the degree to which light is reabsorbed by the emitting material reducing the energetic efficiency. One major impediment to the industrial adoption of NCs is that slight deviations in manufacturing conditions may result in a wide dispersion of the product's properties. A data-driven analysis of over 2000 reactions comparing two data sets, one produced via standard colloidal synthesis and the other via high-throughput automated synthesis is discussed. We show that differences in the reaction conditions of colloidal CsPbBr3 nanocrystals yield nanocrystals with opposite Stokes shift size-dependent trends. These match the morphologies of two-dimensional nanoplatelets (NPLs) and nanocrystal cubes. The Stokes shift size dependence trend of NPLs and nanocubes is non-monotonic indicating different physics is at play for the two nanocrystal morphologies. For nanocrystals with cubic shape, with the increase of edge length, there is a significant decrease in Stokes shift values. However, for NPLs with the increase of thickness (1-4 ML), Stokes shift values will increase. The study emphasizes the transition from a spectroscopic point of view and relates the two Stokes shift trends to 2D and 0D exciton dimensionalities for the two morphologies. Our findings highlight the importance of CsPbBr3 nanocrystal morphology for Stokes shift prediction.

[1]  L. Manna,et al.  Metamorphoses of Cesium Lead Halide Nanocrystals , 2021, Accounts of chemical research.

[2]  D. Kilin,et al.  Universal Size-Dependent Stokes Shifts in Lead Halide Perovskite Nanocrystals. , 2020, The journal of physical chemistry letters.

[3]  E. Chan,et al.  Elucidating the weakly reversible Cs-Pb-Br perovskite nanocrystal reaction network with high-throughput maps and transformations. , 2020, Journal of the American Chemical Society.

[4]  Mark W. B. Wilson,et al.  PbS Nanocrystals Made with Excess PbCl2 Have an Intrinsic Shell that Reduces Their Stokes Shift. , 2019, The journal of physical chemistry letters.

[5]  Weijian Chen,et al.  External stokes shift of perovskite nanocrystals enlarged by photon recycling , 2019, Applied Physics Letters.

[6]  Mirko Prato,et al.  Chloride-Induced Thickness Control in CdSe Nanoplatelets , 2018, Nano letters.

[7]  P. Müller‐Buschbaum,et al.  Boosting Tunable Blue Luminescence of Halide Perovskite Nanoplatelets through Postsynthetic Surface Trap Repair. , 2018, Nano letters.

[8]  M. Kanatzidis,et al.  Scaling law for excitons in 2D perovskite quantum wells , 2018, Nature Communications.

[9]  L. Manna,et al.  Benzoyl Halides as Alternative Precursors for the Colloidal Synthesis of Lead-Based Halide Perovskite Nanocrystals , 2018, Journal of the American Chemical Society.

[10]  Maksym V. Kovalenko,et al.  Properties and potential optoelectronic applications of lead halide perovskite nanocrystals , 2017, Science.

[11]  Christoph Wolf,et al.  Exciton and lattice dynamics in low-temperature processable CsPbBr3 thin-films , 2017 .

[12]  M. Schiavon,et al.  Size-dependent bandgap and particle size distribution of colloidal semiconductor nanocrystals. , 2017, The Journal of chemical physics.

[13]  John E. Herr,et al.  Origin of the Size-Dependent Stokes Shift in CsPbBr3 Perovskite Nanocrystals. , 2017, Journal of the American Chemical Society.

[14]  Lih Y. Lin,et al.  CsPbBr3 Perovskite Quantum Dot Vertical Cavity Lasers with Low Threshold and High Stability , 2017 .

[15]  J. Michopoulos,et al.  Bright triplet excitons in caesium lead halide perovskites , 2017, Nature.

[16]  M. Kuno,et al.  Existence of a Size-Dependent Stokes Shift in CsPbBr3 Perovskite Nanocrystals , 2017 .

[17]  R. Lunt,et al.  Limits of Visibly Transparent Luminescent Solar Concentrators , 2017 .

[18]  Lin-wang Wang,et al.  High Defect Tolerance in Lead Halide Perovskite CsPbBr3. , 2017, The journal of physical chemistry letters.

[19]  I. Infante,et al.  Surface Termination, Morphology, and Bright Photoluminescence of Cesium Lead Halide Perovskite Nanocrystals , 2016 .

[20]  M. Képénekian,et al.  Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic-inorganic perovskites. , 2016, Nanoscale.

[21]  Zeger Hens,et al.  Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. , 2016, ACS nano.

[22]  Giovanni Bertoni,et al.  Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control , 2016, Journal of the American Chemical Society.

[23]  A Paul Alivisatos,et al.  Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies. , 2015, Journal of the American Chemical Society.

[24]  Peter D Dahlberg,et al.  Red, Yellow, Green, and Blue Amplified Spontaneous Emission and Lasing Using Colloidal CdSe Nanoplatelets. , 2015, ACS nano.

[25]  Jasmina A. Sichert,et al.  Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets. , 2015, Nano letters.

[26]  Noah D Bronstein,et al.  Quantum Dot Luminescent Concentrator Cavity Exhibiting 30-fold Concentration , 2015 .

[27]  L. Seijo,et al.  Resolving the ambiguity in the relation between Stokes shift and Huang-Rhys parameter. , 2015, Physical chemistry chemical physics : PCCP.

[28]  Savas Delikanli,et al.  Lateral Size-Dependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets. , 2015, ACS nano.

[29]  H. Snaith,et al.  Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites , 2015, Nature Physics.

[30]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[31]  M. V. Ermolenko,et al.  Electroabsorption by 0D, 1D, and 2D nanocrystals: a comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets. , 2014, ACS nano.

[32]  Dmitri V Talapin,et al.  Low-threshold stimulated emission using colloidal quantum wells. , 2013, Nano letters.

[33]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[34]  X. Gong,et al.  First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites , 2013, 1309.0070.

[35]  Sandrine Ithurria,et al.  Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. , 2012, Journal of the American Chemical Society.

[36]  B. Dubertret,et al.  Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. , 2011, Journal of the American Chemical Society.

[37]  Miroslaw Batentschuk,et al.  Silica‐Coated InP/ZnS Nanocrystals as Converter Material in White LEDs , 2008 .

[38]  Liang Li,et al.  One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. , 2008, Journal of the American Chemical Society.

[39]  J. Nedeljković,et al.  Optical properties of shaped silver nanoparticles. , 2008, Journal of nanoscience and nanotechnology.

[40]  Ewa M. Goldys,et al.  Linear Absorption and Molar Extinction Coefficients in Direct Semiconductor Quantum Dots , 2008 .

[41]  J. G. Solé,et al.  An Introduction to the Optical Spectroscopy of Inorganic Solids , 2005 .

[42]  M. Ratner The Physics and Chemistry of Materials , 2002 .

[43]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[44]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[45]  Arthur J. Nozik,et al.  Size-Dependent Spectroscopy of InP Quantum Dots , 1997 .

[46]  M. Bawendi,et al.  The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state , 1997 .

[47]  Cherie R. Kagan,et al.  Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices , 1995, Science.

[48]  Pierre Lefebvre,et al.  Fractional‐dimensional calculation of exciton binding energies in semiconductor quantum wells and quantum‐well wires , 1993 .

[49]  Louis E. Brus,et al.  Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state , 1984 .

[50]  Benoit Dubertret,et al.  Quasi‐2D Colloidal Semiconductor Nanoplatelets for Narrow Electroluminescence , 2014 .