Palomar Gattini-IR: Survey overview, data processing system, on-sky performance and first results.

(Abridged) Palomar Gattini-IR is a new wide-field, near-infrared robotic time domain survey operating at Palomar Observatory. Using a 30 cm telescope mounted with a H2RG detector, Gattini-IR achieves a field of view of 25 sq. deg. with a pixel scale of 8.7" in J-band. Here, we describe the system design, survey operations, data processing system and on-sky performance of Palomar Gattini-IR. As a part of the nominal survey, Gattini-IR scans $\approx 7500$ square degrees of the sky every night to a median 5$\sigma$ depth of $15.7$ AB mag outside the Galactic plane. The survey covers $\approx 15000$ square degrees of the sky visible from Palomar with a median cadence of 2 days. A real-time data processing system produces stacked science images from dithered raw images taken on sky, together with PSF-fit source catalogs and transient candidates identified from subtractions within a median delay of $\approx 4$ hours from the time of observation. The calibrated data products achieve an astrometric accuracy (RMS) of $\approx 0.7$" with respect to Gaia DR2 for sources with S/N $> 10$, and better than $\approx 0.35$" for sources brighter than $\approx 12$ Vega mag. The photometric accuracy (RMS) achieved in the PSF-fit source catalogs is better than $\approx 3$% for sources brighter than $\approx 12$ Vega mag, as calibrated against the 2MASS catalog. With a field of view $\approx 40\times$ larger than any other existing near infrared imaging instrument, Gattini-IR is probing the reddest and dustiest transients in the local universe such as dust obscured supernovae in nearby galaxies, novae behind large columns of extinction within the galaxy, reddened micro-lensing events in the Galactic plane and variability from cool and dust obscured stars. We present results from transients and variables identified since the start of the commissioning period.

[1]  A. S. Fruchter,et al.  Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998 .

[2]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[3]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[4]  F. Mannucci,et al.  How many supernovae are we missing at high redshift , 2007, astro-ph/0702355.

[5]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[6]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[7]  Eugene Serabyn,et al.  GROWTH on S190425z: Searching Thousands of Square Degrees to Identify an Optical or Infrared Counterpart to a Binary Neutron Star Merger with the Zwicky Transient Facility and Palomar Gattini-IR , 2019, The Astrophysical Journal.

[8]  Larry Denneau,et al.  The Pan-STARRS wide-field optical/NIR imaging survey , 2010, Astronomical Telescopes + Instrumentation.

[9]  A. J. Drake,et al.  FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.

[10]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[11]  A. Miller,et al.  A Morphological Classification Model to Identify Unresolved PanSTARRS1 Sources: Application in the ZTF Real-time Pipeline , 2018, Publications of the Astronomical Society of the Pacific.

[12]  Michael S. Bessell,et al.  SkyMapper and the Southern Sky Survey , 2008 .

[13]  E. Bellm Volumetric Survey Speed: A Figure of Merit for Transient Surveys , 2016, 1605.02081.

[14]  Richard Walters,et al.  The SED Machine: A Robotic Spectrograph for Fast Transient Classification , 2017, 1710.02917.

[15]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[16]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[17]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[18]  E. Ofek,et al.  PROPER IMAGE SUBTRACTION—OPTIMAL TRANSIENT DETECTION, PHOTOMETRY, AND HYPOTHESIS TESTING , 2016, 1601.02655.

[19]  T. Travouillon,et al.  Large amplitude near-infrared flaring of B2 1420+32 detected with Palomar Gattini-IR , 2019 .

[20]  A. Efstathiou,et al.  DISCOVERY OF TWO SUPERNOVAE IN THE NUCLEAR REGIONS OF THE LUMINOUS INFRARED GALAXY IC 883 , 2011, 1112.0777.

[21]  Mansi M. Kasliwal,et al.  Census of the Local Universe (CLU) Narrowband Survey. I. Galaxy Catalogs from Preliminary Fields , 2017, The Astrophysical Journal.

[22]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[23]  S. C. Keller,et al.  The SkyMapper Telescope and The Southern Sky Survey , 2007, Publications of the Astronomical Society of Australia.

[24]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.

[25]  Octavi Fors,et al.  Evryscope Science: Exploring the Potential of All-Sky Gigapixel-Scale Telescopes , 2015, 1501.03162.

[26]  C. Fremling,et al.  Fully automated integral field spectrograph pipeline for the SEDMachine: pysedm , 2019, Astronomy & Astrophysics.

[27]  N. M. Nagar,et al.  The infrared supernova rate in starburst galaxies , 2003, astro-ph/0302323.

[28]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[29]  Mansi M. Kasliwal,et al.  The SPIRITS Sample of Luminous Infrared Transients: Uncovering Hidden Supernovae and Dusty Stellar Outbursts in Nearby Galaxies , 2019, The Astrophysical Journal.

[30]  T. Grav,et al.  INITIAL PERFORMANCE OF THE NEOWISE REACTIVATION MISSION , 2014, 1406.6025.

[31]  Wendy L. Freedman,et al.  THE CARNEGIE HUBBLE PROGRAM , 2011, 1109.3802.

[32]  G. Rieke,et al.  The NASA Spitzer Space Telescope. , 2007, The Review of scientific instruments.

[33]  T. P. Ray,et al.  Near-infrared spectroscopy of young brown dwarfs in upper Scorpius , 2014, 1405.3842.

[34]  Joss Bland-Hawthorn,et al.  Opening the dynamic infrared sky , 2018, Astronomical Telescopes + Instrumentation.

[35]  Umaa Rebbapragada,et al.  Machine Learning for the Zwicky Transient Facility , 2019, Publications of the Astronomical Society of the Pacific.

[36]  Ori D. Fox,et al.  A SPITZER SURVEY FOR DUST IN TYPE IIn SUPERNOVAE , 2011, 1104.5012.

[37]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[38]  A. Efstathiou,et al.  First results from GeMS/GSAOI for project SUNBIRD: Supernovae UNmasked by Infra-Red Detection , 2017, 1709.08307.

[39]  Arjun Dey,et al.  MID-INFRARED VARIABILITY FROM THE SPITZER DEEP WIDE-FIELD SURVEY , 2010, 1002.3365.

[40]  Eran O. Ofek,et al.  How to COAAD Images. I. Optimal Source Detection and Photometry of Point Sources Using Ensembles of Images , 2015, 1512.06872.

[41]  R. Itoh,et al.  The GROWTH Marshal: A Dynamic Science Portal for Time-domain Astronomy , 2019, Publications of the Astronomical Society of the Pacific.

[42]  B. Brown Proceedings of the Society of Photo-optical Instrumentation Engineers , 1975 .

[43]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[44]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Data Processing, Products, and Archive , 2018, Publications of the Astronomical Society of the Pacific.

[45]  S. T. Megeath,et al.  YOUNG STELLAR OBJECT VARIABILITY (YSOVAR): LONG TIMESCALE VARIATIONS IN THE MID-INFRARED , 2014, 1408.6756.

[46]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[47]  Eric C. Bellm,et al.  pyraf-dbsp: Reduction pipeline for the Palomar Double Beam Spectrograph , 2016 .

[48]  Andrew Malonis,et al.  Background-limited Imaging in the Near Infrared with Warm InGaAs Sensors: Applications for Time-domain Astronomy , 2018, The Astronomical Journal.

[49]  F. Mannucci,et al.  A NICMOS search for obscured supernovae in starburst galaxies , 2007 .

[50]  E. L. Wright,et al.  PRELIMINARY RESULTS FROM NEOWISE: AN ENHANCEMENT TO THE WIDE-FIELD INFRARED SURVEY EXPLORER FOR SOLAR SYSTEM SCIENCE , 2011, 1102.1996.

[51]  B. Stalder,et al.  ATLAS: A High-cadence All-sky Survey System , 2018, 1802.00879.

[52]  Ori D. Fox,et al.  SPIRITS: Uncovering Unusual Infrared Transients with Spitzer , 2017, 1701.01151.

[53]  A. Pastorello,et al.  HAWK-I infrared supernova search in starburst galaxies , 2013, 1303.3803.

[54]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[55]  B. J. Shappee,et al.  ASASSN-18ey: The Rise of a New Black Hole X-Ray Binary , 2018, The Astrophysical Journal.

[56]  Roberto Biasi,et al.  A near-infrared tip-tilt sensor for the Keck I laser guide star adaptive optics system , 2014, Astronomical Telescopes and Instrumentation.

[57]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[58]  Massimo Marengo,et al.  AN INFRARED CENSUS OF DUST IN NEARBY GALAXIES WITH SPITZER (DUSTINGS). I. OVERVIEW , 2014, 1411.4053.

[59]  Richard Walters,et al.  The Zwicky Transient Facility: Surveys and Scheduler , 2019, Publications of the Astronomical Society of the Pacific.

[60]  A. Efstathiou,et al.  Discovery of a Very Highly Extinguished Supernova in a Luminous Infrared Galaxy , 2008, 0810.2885.

[61]  Eric Burns,et al.  2900 Square Degree Search for the Optical Counterpart of Short Gamma-Ray Burst GRB 180523B with the Zwicky Transient Facility , 2019, Publications of the Astronomical Society of the Pacific.

[62]  Umaa Rebbapragada,et al.  Real-bogus classification for the Zwicky Transient Facility using deep learning , 2019, Monthly Notices of the Royal Astronomical Society.

[63]  H Germany,et al.  A Method of Correcting Near‐Infrared Spectra for Telluric Absorption , 2002, astro-ph/0211255.

[64]  M. Skrutskie,et al.  2MASS Extended Source Catalog: Overview and Algorithms , 2000, astro-ph/0004318.

[65]  Enrico Ramirez-Ruiz,et al.  Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event , 2017, Nature.

[66]  Robert B. Leighton,et al.  Two-micron sky survey : a preliminary catalog , 1969 .

[67]  A. Efstathiou,et al.  Adaptive Optics Discovery of Supernova 2004ip in the Nuclear Regions of the Luminous Infrared Galaxy IRAS 18293–3413 , 2007, astro-ph/0702591.

[68]  Lin Yan,et al.  Unveiling the dynamic infrared sky with Gattini-IR , 2016, Astronomical Telescopes + Instrumentation.

[69]  Anna M. Moore,et al.  Unveiling the dynamic infrared sky , 2019, Nature Astronomy.

[70]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .