Free vibration analysis of axially loaded cracked Timoshenko beam structures using the dynamic stiffness method

Abstract In this article, the purpose is to investigate the changes in the magnitude of natural frequencies and modal response introduced by the presence of a crack on an axially loaded uniform Timoshenko beam using a particular member theory. A new and convenient procedure based on the coupling of dynamic stiffness matrix and line-spring element is introduced to model the cracked beam. The application of the theory is demonstrated by two illustrative examples of bending–torsion coupled beams with different end conditions, for which the influence of axial force, shear deformation and rotatory inertia on the natural frequencies is studied. Moreover, a parametric study to investigate the effect of the crack on the modal characteristics of the beam is conducted.

[1]  S. Timoshenko,et al.  LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars , 1921 .

[2]  Alessandro Marzani,et al.  Crack effect on dynamic stability of beams under conservative and nonconservative forces , 2004 .

[3]  S. Timoshenko History of strength of materials , 1953 .

[4]  J. Banerjee Coupled bending–torsional dynamic stiffness matrix for beam elements , 1989 .

[5]  Lucio Nobile,et al.  Formulation of Cracked Beam Element for Structural Analysis , 2002 .

[6]  Peretz P. Friedmann,et al.  APPLICATION OF THE FINITE ELEMENT METHOD TO ROTARY-WING AEROELASTICITY. , 1980 .

[7]  Franklin Y. Cheng,et al.  Dynamic Matrix of Timoshenko Beam Columns , 1973 .

[8]  S. Timoshenko,et al.  X. On the transverse vibrations of bars of uniform cross-section , 1922 .

[9]  F. W. Williams,et al.  Natural frequencies of frames with axially loaded Timoshenko Members , 1973 .

[10]  Andrew D. Dimarogonas,et al.  Vibration of cracked structures: A state of the art review , 1996 .

[11]  T. M. Tharp,et al.  A finite element for edge-cracked beam columns , 1987 .

[12]  C. Mei,et al.  Analytical approach to free and forced vibrations of axially loaded cracked Timoshenko beams , 2006 .

[13]  W. L. Hallauer,et al.  Beam bending-torsion dynamic stiffness method for calculation of exact vibration modes , 1982 .

[14]  J. R. Banerjee,et al.  Coupled bending-torsional dynamic stiffness matrix for timoshenko beam elements , 1992 .

[15]  Hiroshi Tada,et al.  The stress analysis of cracks handbook , 2000 .

[16]  H. Okamura,et al.  Applications of the Compliance Concept in Fracture Mechanics , 1973 .

[17]  J. S. Fleming,et al.  Dynamics in engineering structures , 1973 .

[18]  Giuseppe Oliveto Dynamic stiffness and flexibility functions for axially strained Timoshenko beams , 1992 .

[19]  Erasmo Viola,et al.  Stress intensity factors for cracked T-sections and dynamic behaviour of T-beams , 2006 .

[20]  Andrew D. Dimarogonas,et al.  A finite element of a cracked prismatic beam for structural analysis , 1988 .

[21]  J. Banerjee Explicit Modal Analysis of an Axially Loaded Timoshenko Beam With Bending-Torsion Coupling , 2000 .

[22]  V. Koloušek,et al.  Anwendung des Gesetzes der virtuellen Verschiebungen und des Reziprozitätssatzes in der Stabwerksdynamik , 1941 .

[23]  Y. Z. Chen,et al.  Solution of torsion crack problem of an orthotropic rectangular bar by using computing compliance method , 1997 .

[24]  J. R. Banerjee,et al.  Coupled bending-torsional dynamic stiffness matrix of an axially loaded Timoshenko beam element , 1994 .

[25]  Erasmo Viola,et al.  Detection of crack location using cracked beam element method for structural analysis , 2001 .

[26]  Andrew D. Dimarogonas,et al.  A CONTINUOUS CRACKED BEAM VIBRATION THEORY , 1998 .

[27]  Daniel J. Inman,et al.  Modeling and analysis of a cracked composite cantilever beam vibrating in coupled bending and torsion , 2005 .

[28]  Franklin Y. Cheng,et al.  Vibrations of Timoshenko Beams and Frameworks , 1970 .

[29]  Romualdo Ruotolo,et al.  NATURAL FREQUENCIES OF A BEAM WITH AN ARBITRARY NUMBER OF CRACKS , 1999 .

[30]  Andrew D. Dimarogonas,et al.  Coupling of bending and torsional vibration of a cracked Timoshenko shaft , 1987 .

[31]  Noriyuki Miyazaki Application of line-spring model to dynamic stress intensity factor analysis of pre-cracked bending specimen , 1991 .

[32]  J. R. Banerjee,et al.  Coupled bending-torsional dynamic stiffness matrix for axially loaded beam elements , 1992 .

[33]  T. Yokoyama,et al.  Vibration analysis of edge-cracked beams using a line-spring model , 1998 .

[34]  J. R. Banerjee,et al.  Flutter characteristics of high aspect ratio tailless aircraft , 1984 .

[35]  T. M. Wang,et al.  Vibrations of frame structures according to the Timoshenko theory , 1971 .

[36]  J. R. Banerjee,et al.  Flutter modes of high aspect ratio tailless aircraft , 1988 .