A Survey of Numerical Methods for Solving Nonlinear Integral Equations

A survey is given of numerical methods for calculating fixed points of nonlinear integral operators. The emphasis is on general methods, ones that are applicable to a wide variety of nonlinear integral equations. These methods include projection methods (Galerkin and collocation) and Nystrom methods. Some of the practical problems related to the implementation of these methods is also discussed. All of the methods considered require the solution of finite systems of nonlinear equations. A discussion is given of some recent work on iteration methods for solving these nonlinear equations.

[1]  L. Kantorovich,et al.  Functional analysis in normed spaces , 1952 .

[2]  R. Weir,et al.  On the H-Functions for Isotropic Scattering , 1959 .

[3]  H. Brakhage Über die numerische Behandlung von Integralgleichungen nach der Quadraturformelmethode , 1960 .

[4]  R. Cameron,et al.  Nonlinear Integral Equations , 1964 .

[5]  W. Petryshyn On nonlinear P-compact operators in Banach space with applications to constructive fixed-point theorems , 1966 .

[6]  Differentiability and convergence for compact nonlinear operators , 1966 .

[7]  M. A. Krasnoselʹskii Topological methods in the theory of nonlinear integral equations , 1968 .

[8]  S. S. Antman,et al.  Bifurcation theory and nonlinear eigenvalue problems, 1967 , 1968 .

[9]  L. B. Rall,et al.  Computational Solution of Nonlinear Operator Equations , 1969 .

[10]  Zum Galerkin-Verfahren für die hammersteinsche gleichung , 1969 .

[11]  Felix E. Browder,et al.  Nonlinear Functional Analysis and Nonlinear Integral Equations of Hammerstein and Urysohn Type , 1971 .

[12]  M. A. Krasnoselʹskii,et al.  Approximate Solution of Operator Equations , 1972 .

[13]  Kendall E. Atkinson The Numerical Evaluation of Fixed Points for Completely Continuous Operators , 1973 .

[14]  Richard Weiss On the Approximation of Fixed Points of Nonlinear Compact Operators , 1974 .

[15]  K. Atkinson Iterative variants of the Nyström method for the numerical solution of integral equations , 1974 .

[16]  The convergence of approximate methods for solving linear and non-linear operator equations , 1974 .

[17]  Ian H. Sloan Improvement by iteration for compact operator equations , 1976 .

[18]  R. Taylor,et al.  The Numerical Treatment of Integral Equations , 1978 .

[19]  Philip M. Anselone,et al.  Compactness principles in nonlinear operator approximation theory , 1979 .

[20]  Ian H. Sloan,et al.  Piecewise Continuous Collocation for Integral Equations , 1983 .

[21]  M. A. Krasnoselʹskii,et al.  Geometrical Methods of Nonlinear Analysis , 1984 .

[22]  S. Joe Discrete Collocation Methods for Second Kind Fredholm Integral Equations , 1985 .

[23]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[24]  H. Brunner,et al.  The numerical solution of Volterra equations , 1988 .

[25]  O. Hüner The Newton method for solving the Theodorsen integral equation , 1986 .

[26]  E. Allgower,et al.  A mesh-independence principle for operator equations and their discretizations , 1986 .

[27]  Kendall E. Atkinson,et al.  The Discrete Galerkin Method for Integral Equations , 1987 .

[28]  Ian H. Sloan,et al.  A new collocation-type method for Hammerstein integral equations , 1987 .

[29]  A. Griewank The local convergence of Broyden-like methods on Lipschitzian problems in Hilbert spaces , 1987 .

[30]  Sunil Kumar Superconvergence of a Collocation-type Method for Hummerstein Equations , 1987 .

[31]  K. Ruotsalainen,et al.  On the boundary element method for some nonlinear boundary value problems , 1988 .

[32]  Sunil Kumar,et al.  A discrete collocation-type method for Hammerstein equations , 1988 .

[33]  Carl Tim Kelley,et al.  A pointwise quasi-Newton method for integral equations , 1988 .

[34]  Mahadevan Ganesh,et al.  Discrete numerical solvability of Hammerstein integral equations of mixed type , 1989 .

[35]  Jukka Saranen,et al.  On the collocation method for a nonlinear boundary integral equation , 1989 .

[36]  M. Golberg Perturbed Projection Methods for Various Classes of Operator and Integral Equations , 1990 .

[37]  Jukka Saranen,et al.  Projection methods for a class of Hammerstein equations , 1990 .

[38]  Igor Moret,et al.  A quasi-Newton method for solving fixed point problems in Hilbert spaces , 1991 .

[39]  Hideaki Kaneko,et al.  Numerical Solutions for Weakly Singular Hammerstein Equations and their Superconvergence , 1992 .

[40]  Kendall E. Atkinson,et al.  The discrete collocation method for nonlinear integral equations , 1993 .