Bayesian Approach for Uncertainty Analysis of an Urban Storm Water Model and Its Application to a Heavily Urbanized Watershed

AbstractThe significance of uncertainty analysis (UA) to quantify reliability of model simulations is being recognized. Consequently, literature on parameter and predictive uncertainty assessment of water resources models has been rising. Applications dealing with urban drainage systems are, however, very limited. This study applies formal Bayesian approach for uncertainty analysis of a widely used storm water management model and illustrates the methodology using a highly urbanized watershed in the Los Angeles Basin, California. A flexible likelihood function that accommodates heteroscedasticity, non-normality, and temporal correlation of model residuals has been used for the study along with a Markov-chain Monte Carlo-based sampling scheme. The solution of the UA model has been compared with the solution of the conventional calibration methodology widely practiced in water resources modeling. Results indicate that the maximum likelihood solution determined using the UA model produced runoff simulations ...

[1]  Cajo J. F. ter Braak,et al.  Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation , 2008 .

[2]  James E Ball,et al.  Evaluation of spatially variable control parameters in a complex catchment modelling system : a genetic algorithm application , 2007 .

[3]  G. Kuczera Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty , 1983 .

[4]  András Bárdossy,et al.  Generic error model for calibration and uncertainty estimation of hydrological models , 2008 .

[5]  George E. P. Box,et al.  Bayesian Inference in Statistical Analysis: Box/Bayesian , 1992 .

[6]  George Kuczera,et al.  Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .

[7]  Ewri,et al.  World environmental and water resources congress 2011 : bearing knowledge for sustainability , 2011 .

[8]  G. Czapar,et al.  [Water quality]. , 1992, Verhandelingen - Koninklijke Academie voor Geneeskunde van Belgie.

[9]  Jery R. Stedinger,et al.  Appraisal of the generalized likelihood uncertainty estimation (GLUE) method , 2008 .

[10]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[11]  D. Higdon,et al.  Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .

[12]  Bryan A. Tolson,et al.  Dynamically dimensioned search algorithm for computationally efficient watershed model calibration , 2007 .

[13]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[14]  James E Ball Discussion of “Automatic Calibration of the U.S. EPA SWMM Model for a Large Urban Catchment” by J. Barco, K. M. Wong, and M. K. Stenstrom , 2009 .

[15]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[16]  C. Diks,et al.  Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation , 2005 .

[17]  W. Green,et al.  Studies on Soil Phyics. , 1911, The Journal of Agricultural Science.

[18]  George Kuczera,et al.  Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis , 2009 .

[19]  G. Ampt,et al.  Studies on Soil Physics: Part II — The Permeability of an Ideal Soil to Air and Water , 1912, The Journal of Agricultural Science.

[20]  D. Kavetski,et al.  Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters , 2006 .

[21]  Cajo J. F. ter Braak,et al.  Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? , 2009 .

[22]  Keith Beven,et al.  A manifesto for the equifinality thesis , 2006 .

[23]  Michael K. Stenstrom,et al.  Automatic Calibration of the U.S. EPA SWMM Model for a Large Urban Catchment , 2008 .

[24]  Misgana K. Muleta,et al.  Model Performance Sensitivity to Objective Function during Automated Calibrations , 2012 .

[25]  W. Rauch,et al.  Assessing uncertainties in urban drainage models , 2012 .

[26]  E. Stein,et al.  Dry-Weather Metals and Bacteria Loading in an Arid, Urban Watershed: Ballona Creek, California , 2005 .

[27]  G. Viviani,et al.  An urban drainage stormwater quality model model development and uncertainty quantification , 2010 .

[28]  Misgana K. Muleta,et al.  Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model , 2005 .

[29]  Gabriele Freni,et al.  Urban runoff modelling uncertainty: Comparison among Bayesian and pseudo-Bayesian methods , 2009, Environ. Model. Softw..

[30]  Surface Drainage,et al.  ASSESSMENT OF STORM DRAIN SOURCES OF CONTAMINANTS TO SANTA MONICA BAY , 1993 .

[31]  B. M. Hill,et al.  Bayesian Inference in Statistical Analysis , 1974 .

[32]  Luca Vezzaro,et al.  Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling. , 2012, Water research.

[33]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[34]  Gabriele Freni,et al.  Uncertainty in urban stormwater quality modelling: the influence of likelihood measure formulation in the GLUE methodology. , 2009, The Science of the total environment.

[35]  M. Trosset,et al.  Bayesian recursive parameter estimation for hydrologic models , 2001 .

[36]  Jasper A. Vrugt,et al.  High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM(ZS) and high‐performance computing , 2012 .

[37]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 2. Application , 2006 .

[38]  Soroosh Sorooshian,et al.  General Review of Rainfall-Runoff Modeling: Model Calibration, Data Assimilation, and Uncertainty Analysis , 2009 .

[39]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[40]  G. G. Amenu,et al.  A Comparative Study of Water Quality Conditions between Heavily Urbanized and Less Urbanized Watersheds of Los Angeles Basin , 2011 .

[41]  J. Stedinger,et al.  Appraisal of the generalized likelihood uncertainty estimation (GLUE) method , 2008 .

[42]  J. Vrugt,et al.  A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non‐Gaussian errors , 2010 .

[43]  R. Horton,et al.  Determination of infiltration‐capacity for large drainage‐basins , 1937 .

[44]  M. K. Muleta Comparison of model evaluation methods to develop a comprehensive watershed simulation model. , 2010 .

[45]  Larry A. Roesner,et al.  Evaluation of Methods for Representing Urban Terrain in Storm-Water Modeling , 2010 .

[46]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[47]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory , 2006 .

[48]  S. Bay,et al.  Water quality impacts of stormwater discharges to Santa Monica Bay. , 2003, Marine environmental research.

[49]  G. Freni,et al.  Uncertainty in urban stormwater quality modelling: the effect of acceptability threshold in the GLUE methodology. , 2008, Water research.

[50]  Christine A. Shoemaker,et al.  Introduction to special section on Uncertainty Assessment in Surface and Subsurface Hydrology: An overview of issues and challenges , 2009 .

[51]  P. Mantovan,et al.  Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology , 2006 .

[52]  S. Sorooshian,et al.  Stochastic parameter estimation procedures for hydrologie rainfall‐runoff models: Correlated and heteroscedastic error cases , 1980 .

[53]  Jasper A. Vrugt,et al.  Semi-distributed parameter optimization and uncertainty assessment for large-scale streamflow simulation using global optimization / Optimisation de paramètres semi-distribués et évaluation de l'incertitude pour la simulation de débits à grande échelle par l'utilisation d'une optimisation globale , 2008 .

[54]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[55]  R. Müftüoğlu,et al.  Monthly runoff generation by non-linear models , 1991 .