A generalized Prandtl-Ishlinskii model for characterizing the rate-independent and rate-dependent hysteresis of piezoelectric actuators.
暂无分享,去创建一个
[1] Xianmin Zhang,et al. Modeling of rate-dependent hysteresis in piezoelectric actuators based on a modified Prandtl-Ishlinskii model , 2015 .
[2] Bernard F. Lamond,et al. Novel self-adaptive particle swarm optimization methods , 2016, Soft Comput..
[3] Xinliang Zhang,et al. A hybrid model for rate-dependent hysteresis in piezoelectric actuators , 2010 .
[4] Musa Jouaneh,et al. Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators , 1997 .
[5] J.A. De Abreu-Garcia,et al. Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.
[6] Chun-Yi Su,et al. Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis , 2000, IEEE Trans. Autom. Control..
[7] Nagi G. Naganathan,et al. Dynamic Preisach modelling of hysteresis for the piezoceramic actuator system , 2001 .
[8] Wen-Yuh Jywe,et al. Precision tracking control of a piezoelectric-actuated system , 2008 .
[9] Xuedong Chen,et al. Inverse compensation for hysteresis in piezoelectric actuator using an asymmetric rate-dependent model. , 2013, The Review of scientific instruments.
[10] Bijaya Ketan Panigrahi,et al. Adaptive particle swarm optimization approach for static and dynamic economic load dispatch , 2008 .
[11] U-Xuan Tan,et al. Feedforward Controller of Ill-Conditioned Hysteresis Using Singularity-Free Prandtl–Ishlinskii Model , 2009, IEEE/ASME Transactions on Mechatronics.
[12] Xianmin Zhang,et al. A Novel Mathematical Piezoelectric Hysteresis Model Based on Polynomial , 2014, ICIRA.
[13] S. Li-ning,et al. Tracking control of piezoelectric actuator based on a new mathematical model , 2004 .
[14] Chun-Yi Su,et al. Development of the rate-dependent Prandtl–Ishlinskii model for smart actuators , 2008 .
[15] Ying Zhang,et al. Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis , 2004, IEEE Trans. Autom. Control..
[16] I. Mayergoyz,et al. Generalized Preisach model of hysteresis , 1988 .
[17] R. Lerch,et al. Modeling and measurement of creep- and rate-dependent hysteresis in ferroelectric actuators , 2011 .