Breit–Wigner Approximation and the Distribution¶of Resonances

[1]  Plamen Stefanov,et al.  Quasimodes and resonances: Sharp lower bounds , 1999 .

[2]  M. Zworski Poisson Formula for Resonances in Even Dimensions , 1999, math/9901093.

[3]  G. Popov On the Contribution of Degenerate Periodic Trajectories to the Wave-Trace , 1998 .

[4]  N. Burq Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel , 1998 .

[5]  M. Zworski,et al.  Scattering asymptotics for Riemann surfaces , 1997 .

[6]  D. Robert Relative Time-Delay for Perturbations of Elliptic Operators and Semiclassical Asymptotics , 1994 .

[7]  M. Zworski,et al.  Lower Bounds on the Number of Scattering Poles, II , 1994 .

[8]  G. Vodev Sharp bounds on the number of scattering poles in even-dimensional spaces , 1994 .

[9]  G. Vodev Sharp bounds on the number of scattering poles for perturbations of the Laplacian , 1992 .

[10]  Maciej Zworski,et al.  Complex scaling and the distribution of scattering poles , 1991 .

[11]  M. Zworski Sharp polynomial bounds on the number of scattering poles , 1989 .

[12]  D. Robert,et al.  Breit-Wigner formulas for the scattering phase and the total scattering cross-section in the semi-classical limit , 1989 .

[13]  Maciej Zworski,et al.  Distribution of poles for scattering on the real line , 1987 .

[14]  R. Melrose Polynomial bound on the number of scattering poles , 1983 .

[15]  E. C. Titchmarsh,et al.  The theory of functions , 1933 .

[16]  W. Burnside Theory of Functions , 1899, Nature.

[17]  J. Sjöstrand A Trace Formula and Review of Some Estimates for Resonances , 1997 .

[18]  V. Petkov Weyl asymptotic of the scattering phase for metric perturbations , 1995 .

[19]  V. Petkov,et al.  Upper bounds on the number of scattering poles and the Lax–Phillips conjecture , 1993 .

[20]  M. Zworski,et al.  Lower bounds on the number of scattering poles , 1993 .

[21]  G. Vodev On the distribution of scattering poles for perturbations of the Laplacian , 1992 .

[22]  D. Robert Asymptotique de la phase de diffusion à haute énergie pour des perturbations du second ordre du laplacien , 1992 .

[23]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[24]  R. Melrose Weyl asymptotics for the phase in obstacle scattering , 1988 .

[25]  R. Melrose Polynomial bound on the distribution of poles in scattering by an obstacle , 1984 .

[26]  P. H. Müller,et al.  L. Hörmander, Linear Partial Differential Operators. VIII + 284 S. m. 1 Fig. Berlin/Göttingen/Heidelberg 1963. Springer-Verlag. Preis geb. DM 42,- . , 1964 .