Message-Passing De-Quantization With Applications to Compressed Sensing

Estimation of a vector from quantized linear measurements is a common problem for which simple linear techniques are suboptimal-sometimes greatly so. This paper develops message-passing de-quantization (MPDQ) algorithms for minimum mean-squared error estimation of a random vector from quantized linear measurements, notably allowing the linear expansion to be overcomplete or undercomplete and the scalar quantization to be regular or non-regular. The algorithm is based on generalized approximate message passing (GAMP), a recently-developed Gaussian approximation of loopy belief propagation for estimation with linear transforms and nonlinear componentwise-separable output channels. For MPDQ, scalar quantization of measurements is incorporated into the output channel formalism, leading to the first tractable and effective method for high-dimensional estimation problems involving non-regular scalar quantization. The algorithm is computationally simple and can incorporate arbitrary separable priors on the input vector including sparsity-inducing priors that arise in the context of compressed sensing. Moreover, under the assumption of a Gaussian measurement matrix with i.i.d. entries, the asymptotic error performance of MPDQ can be accurately predicted and tracked through a simple set of scalar state evolution equations. We additionally use state evolution to design MSE-optimal scalar quantizers for MPDQ signal reconstruction and empirically demonstrate the superior error performance of the resulting quantizers. In particular, our results show that non-regular quantization can greatly improve rate-distortion performance in some problems with oversampling or with undersampling combined with a sparsity-inducing prior.

[1]  Chih-Chun Wang,et al.  Random Sparse Linear Systems Observed Via Arbitrary Channels: A Decoupling Principle , 2007, 2007 IEEE International Symposium on Information Theory.

[2]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[3]  Vivek K. Goyal,et al.  Distributed Scalar Quantization for Computing: High-Resolution Analysis and Extensions , 2008, IEEE Transactions on Information Theory.

[4]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[5]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[6]  Vivek K Goyal,et al.  Quantized Frame Expansions with Erasures , 2001 .

[7]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, ISIT.

[8]  Sundeep Rangan,et al.  Generalized approximate message passing for estimation with random linear mixing , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[9]  Dongning Guo,et al.  Asymptotic Mean-Square Optimality of Belief Propagation for Sparse Linear Systems , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.

[10]  Petros Boufounos,et al.  Universal Rate-Efficient Scalar Quantization , 2010, IEEE Transactions on Information Theory.

[11]  Laurent Jacques,et al.  Dequantizing Compressed Sensing: When Oversampling and Non-Gaussian Constraints Combine , 2009, IEEE Transactions on Information Theory.

[12]  Ruby J Pai Nonadaptive lossy encoding of sparse signals , 2006 .

[13]  John J. Benedetto,et al.  Sigma-delta (/spl Sigma//spl Delta/) quantization and finite frames , 2006, IEEE Trans. Inf. Theory.

[14]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[15]  Emmanuel J. Candès,et al.  Encoding the /spl lscr//sub p/ ball from limited measurements , 2006, Data Compression Conference (DCC'06).

[16]  Richard G. Baraniuk,et al.  Democracy in Action: Quantization, Saturation, and Compressive Sensing , 2011 .

[17]  Martin Vetterli,et al.  Lower bound on the mean-squared error in oversampled quantization of periodic signals using vector quantization analysis , 1996, IEEE Trans. Inf. Theory.

[18]  E. Candès,et al.  Encoding the ` p Ball from Limited Measurements , 2006 .

[19]  Richard G. Baraniuk,et al.  Bayesian Compressive Sensing Via Belief Propagation , 2008, IEEE Transactions on Signal Processing.

[20]  Vivek K. Goyal,et al.  Quantized Overcomplete Expansions in IRN: Analysis, Synthesis, and Algorithms , 1998, IEEE Trans. Inf. Theory.

[21]  Robert H. Walden,et al.  Analog-to-digital converter survey and analysis , 1999, IEEE J. Sel. Areas Commun..

[22]  Masato Okada,et al.  Approximate belief propagation, density evolution, and statistical neurodynamics for CDMA multiuser detection , 2005, IEEE Transactions on Information Theory.

[23]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[24]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[25]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[26]  Zhifeng Zhang,et al.  Adaptive time-frequency decompositions , 1994 .

[27]  Zixiang Xiong,et al.  Slepian-Wolf Coded Nested Lattice Quantization for Wyner-Ziv Coding: High-Rate Performance Analysis and Code Design , 2006, IEEE Transactions on Information Theory.

[28]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[29]  Vinay A. Vaishampayan,et al.  Design of multiple description scalar quantizers , 1993, IEEE Trans. Inf. Theory.

[30]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[31]  Giuseppe Caire,et al.  Iterative multiuser joint decoding: Unified framework and asymptotic analysis , 2002, IEEE Trans. Inf. Theory.

[32]  Bernhard G. Bodmann,et al.  Frame paths and error bounds for sigma–delta quantization☆ , 2007 .

[33]  Sundeep Rangan,et al.  On the Rate-Distortion Performance of Compressed Sensing , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[34]  Sundeep Rangan,et al.  Recursive consistent estimation with bounded noise , 2001, IEEE Trans. Inf. Theory.

[35]  Vivek K. Goyal,et al.  Theoretical foundations of transform coding , 2001, IEEE Signal Process. Mag..

[36]  Sundeep Rangan,et al.  Optimal quantization for compressive sensing under message passing reconstruction , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[37]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[38]  J. Wolfowitz The rate distortion function for source coding with side information at the decoder , 1979 .

[39]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[40]  Zoran Cvetkovic Resilience properties of redundant expansions under additive noise and quantization , 2003, IEEE Trans. Inf. Theory.

[41]  J. Boutros,et al.  Iterative multiuser joint decoding: unified framework and asymptotic analysis , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[42]  Vivek K Goyal Quantized Overcomplete Expansions : Analysis , Synthesis and Algorithms , 1995 .

[43]  John J. Benedetto,et al.  Sigma-delta quantization and finite frames , 2004, ICASSP.

[44]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[45]  Sundeep Rangan,et al.  Hybrid generalized approximate message passing with applications to structured sparsity , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[46]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[47]  Martin Vetterli,et al.  Error-Rate Characteristics of Oversampled Analog-to-Digital Conversion , 1998, IEEE Trans. Inf. Theory.

[48]  Vivek K. Goyal,et al.  Optimal quantization of random measurements in compressed sensing , 2009, 2009 IEEE International Symposium on Information Theory.

[49]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, 2010 IEEE International Symposium on Information Theory.

[50]  Stephen P. Boyd,et al.  Compressed Sensing With Quantized Measurements , 2010, IEEE Signal Processing Letters.

[51]  Allen Gersho,et al.  Principles of quantization , 1978 .

[52]  David L. Neuhoff,et al.  Quantization , 2022, IEEE Trans. Inf. Theory.

[53]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[54]  Martin Vetterli,et al.  Deterministic analysis of oversampled A/D conversion and decoding improvement based on consistent estimates , 1994, IEEE Trans. Signal Process..

[55]  Bernhard G. Bodmann,et al.  Randomly dithered quantization and sigma–delta noise shaping for finite frames , 2008 .

[56]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[57]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[58]  Harish Viswanathan,et al.  On the whiteness of high-resolution quantization errors , 2000, IEEE Trans. Inf. Theory.

[59]  A. Hasman,et al.  Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .

[60]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[61]  Sundeep Rangan,et al.  Hybrid Approximate Message Passing with Applications to Structured Sparsity , 2011, ArXiv.

[62]  V.K. Goyal,et al.  Compressive Sampling and Lossy Compression , 2008, IEEE Signal Processing Magazine.

[63]  Sundeep Rangan,et al.  Estimation with random linear mixing, belief propagation and compressed sensing , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[64]  Martin Vetterli,et al.  Reduction of the MSE in R-times oversampled A/D conversion O(1/R) to O(1/R2) , 1994, IEEE Trans. Signal Process..

[65]  Alexander M. Powell,et al.  Mean squared error bounds for the Rangan–Goyal soft thresholding algorithm , 2010 .

[66]  Vivek K. Goyal,et al.  Multiple description coding: compression meets the network , 2001, IEEE Signal Process. Mag..

[67]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.