Optimization of VDOT Safety Service Patrols to Improve VDOT Response to Incidents

With millions of vehicles on the road each day, traffic delays and interstate congestion result in loss of productivity and millions of dollars each year. A majority of these traffic delays are caused by traffic incidents including crashes and disabled vehicles. These incidents are safety hazards and can lead to secondary crashes. Rapid clearance of these events and scene management during an incident can significantly reduce the impact of congestion. To combat hazardous conditions and decrease congestion related delays, the Virginia Department of Transportation (VDOT) has a fleet of Safety Service Patrols (SSP) that monitor highway conditions and assist emergency responders in scene clearance and traffic management. Managers of the SSP program seek to schedule patrollers in a manner that optimizes their influence on safety and congestion. This paper proposes a Genetic Algorithm based route scheduling algorithm that assigns SSP routes with the goal of minimizing the total time vehicles are stranded before an SSP vehicle arrives. The algorithm adapts to different incident rates and response times to produce schedules that vary by time-of-day and day-of-week. To examine the performance of the algorithm, optimal schedules were made for I- 95 in Virginia. A regression model was also developed to estimate the incident rates using a combination of daily traffic counts and historic rates that accounts for the under-counting of incidents in non-patrolled regions. Another model was used to estimate the SSP response times that resolves the inconsistencies with historical response times for incidents that occurred outside of the patrolled roadways. The results indicate that new route schedules based on the day-of-week could lead to a reduction in total time waiting for SSP assistance by an average of 13%, helping VDOT maintain safety, increase impact, and Keep Virginia Moving.