Ground States and Singular Vectors of Convex Variational Regularization Methods

Singular value decomposition is the key tool in the analysis and understanding of linear regularization methods. In the last decade nonlinear variational approaches such as $\ell^1$ or total variation regularizations became quite prominent regularization techniques with certain properties being superior to standard methods. In the analysis of those, singular values and vectors did not play any role so far, for the obvious reason that these problems are nonlinear, together with the issue of defining singular values and singular vectors. In this paper however we want to start a study of singular values and vectors for nonlinear variational regularization of linear inverse problems, with particular focus on singular one-homogeneous regularization functionals. A major role is played by the smallest singular value, which we define as the ground state of an appropriate functional combining the (semi-)norm introduced by the forward operator and the regularization functional. The optimality condition for the ground state further yields a natural generalization to higher singular values and vectors involving the subdifferential of the regularization functional. We carry over two main properties from the world of linear regularization. The first one is gaining information about scale, respectively the behavior of regularization techniques at different scales. This also leads to novel estimates at different scales, generalizing the estimates for the coefficients in the linear singular value expansion. The second one is to provide exact solutions for variational regularization methods. We will show that all singular vectors can be reconstructed up to a scalar factor by the standard Tikhonov-type regularization approach even in the presence of (small) noise. Moreover, we will show that they can even be reconstructed without any bias by the recently popularized inverse scale space method.

[1]  Rongjie Lai,et al.  A Splitting Method for Orthogonality Constrained Problems , 2014, J. Sci. Comput..

[2]  Wotao Yin,et al.  A feasible method for optimization with orthogonality constraints , 2013, Math. Program..

[3]  Michael Möller,et al.  Multiscale Methods for Polyhedral Regularizations , 2013, SIAM J. Optim..

[4]  Michael Möller,et al.  An adaptive inverse scale space method for compressed sensing , 2012, Math. Comput..

[5]  K. Bredies,et al.  Inverse problems in spaces of measures , 2013 .

[6]  Michael Unser,et al.  Wavelet Shrinkage With Consistent Cycle Spinning Generalizes Total Variation Denoising , 2012, IEEE Signal Processing Letters.

[7]  S. Osher,et al.  Image restoration: Total variation, wavelet frames, and beyond , 2012 .

[8]  J. Dolbeault,et al.  Symmetry of extremals of functional inequalities via spectral estimates for linear operators , 2011, 1109.6212.

[9]  Michael Möller Multiscale methods for (generalized) sparse recovery and applications in high dimensional imaging , 2012 .

[10]  Yohann de Castro,et al.  Exact Reconstruction using Beurling Minimal Extrapolation , 2011, 1103.4951.

[11]  S. Setzer,et al.  Infimal convolution regularizations with discrete ℓ1-type functionals , 2011 .

[12]  Martin Burger,et al.  ERROR ESTIMATES FOR GENERAL FIDELITIES , 2011 .

[13]  Matthias Hein,et al.  An Inverse Power Method for Nonlinear Eigenproblems with Applications in 1-Spectral Clustering and Sparse PCA , 2010, NIPS.

[14]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[15]  Arthur D. Szlam,et al.  Total variation and cheeger cuts , 2010, ICML 2010.

[16]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[17]  M. Agueh A variational approach to uniqueness of ground states for certain quasilinear PDEs , 2010 .

[18]  P. D. Lamberti,et al.  EXISTENCE AND UNIQUENESS FOR A p-LAPLACIAN NONLINEAR EIGENVALUE PROBLEM , 2010 .

[19]  Matthias Hein,et al.  Spectral clustering based on the graph p-Laplacian , 2009, ICML '09.

[20]  G. Carlier,et al.  A class of total variation minimization problems on the whole space , 2009 .

[21]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[22]  A. Chambolle,et al.  A characterization of convex calibrable sets in RN with respect to anisotropic norms , 2008 .

[23]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[24]  P. Bühlmann,et al.  The group lasso for logistic regression , 2008 .

[25]  D. Lorenz,et al.  Convergence rates and source conditions for Tikhonov regularization with sparsity constraints , 2008, 0801.1774.

[26]  Zhou Wei,et al.  Generalized Euler identity for subdifferentials of homogeneous functions and applications , 2008 .

[27]  Lin He,et al.  Error estimation for Bregman iterations and inverse scale space methods in image restoration , 2007, Computing.

[28]  Otmar Scherzer,et al.  Inverse Total Variation Flow , 2007, Multiscale Model. Simul..

[29]  O. Scherzer,et al.  A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators , 2007 .

[30]  Marcello Lucia,et al.  Simplicity of the principal eigenvalue for indefinite quasilinear problems , 2007, Advances in Differential Equations.

[31]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[32]  O. Scherzer,et al.  Error estimates for non-quadratic regularization and the relation to enhancement , 2006 .

[33]  S. Osher,et al.  Nonlinear inverse scale space methods , 2006 .

[34]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[35]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[36]  Richard G. Baraniuk,et al.  Recovery of Jointly Sparse Signals from Few Random Projections , 2005, NIPS.

[37]  E. Resmerita Regularization of ill-posed problems in Banach spaces: convergence rates , 2005 .

[38]  Antonin Chambolle,et al.  Dual Norms and Image Decomposition Models , 2005, International Journal of Computer Vision.

[39]  A. Chambolle,et al.  A characterization of convex calibrable sets in , 2005 .

[40]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[41]  E. Cachan,et al.  Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow , 2005 .

[42]  Antonin Chambolle,et al.  Image Decomposition into a Bounded Variation Component and an Oscillating Component , 2005, Journal of Mathematical Imaging and Vision.

[43]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[44]  Kenji Fujimoto,et al.  What are singular values of nonlinear operators? , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[45]  S. Osher,et al.  Convergence rates of convex variational regularization , 2004 .

[46]  Thomas Brox,et al.  On the Equivalence of Soft Wavelet Shrinkage, Total Variation Diffusion, Total Variation Regularization, and SIDEs , 2004, SIAM J. Numer. Anal..

[47]  Jean-Luc Starck,et al.  Image decomposition: separation of texture from piecewise smooth content , 2003, SPIE Optics + Photonics.

[48]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Bernhard Kawohl,et al.  Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant , 2003 .

[50]  I. Yamada,et al.  An orthogonal matrix optimization by Dual Cayley Parametrization Technique , 2003 .

[51]  M. Novaga,et al.  The Total Variation Flow in RN , 2002 .

[52]  Jonathan H. Manton,et al.  Optimization algorithms exploiting unitary constraints , 2002, IEEE Trans. Signal Process..

[53]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[54]  Otmar Scherzer,et al.  Inverse Scale Space Theory for Inverse Problems , 2001, Scale-Space.

[55]  B. Kawohl Symmetry results for functions yielding best constants in Sobolev-type inequalities , 2000 .

[56]  A. Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[57]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[58]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[59]  G. W. Stewart,et al.  On the Early History of the Singular Value Decomposition , 1993, SIAM Rev..

[60]  P. P. B. Eggermont,et al.  Maximum entropy regularization for Fredholm integral equations of the first kind , 1993 .

[61]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[62]  B. Dacorogna,et al.  Sur une généralisation de l’inégalité de Wirtinger , 1992 .

[63]  Umberto Amato,et al.  Maximum entropy regularization of Fredholm integral equations of the first kind , 1991 .

[64]  E. Zeidler Nonlinear Functional Analysis and its Applications: III: Variational Methods and Optimization , 1984 .

[65]  M. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates , 1983 .

[66]  P. Lions,et al.  Existence of Stationary States in Nonlinear Scalar Field Equations , 1980 .

[67]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[68]  D. Showalter,et al.  Representation and computation of the pseudoinverse , 1967 .

[69]  F. Browder Variational methods for nonlinear elliptic eigenvalue problems , 1965 .

[70]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[71]  G. W. STEWARTt ON THE EARLY HISTORY OF THE SINGULAR VALUE DECOMPOSITION * , 2022 .