Thiol-ene Enabled Chemical Synthesis of Truncated S-Lipidated Teixobactin Analogs

Herein is described the introduction of lipid moieties onto a simplified teixobactin pharmacophore using a modified Cysteine Lipidation on a Peptide or Amino acid (CLipPA) technique, whereby cysteine was substituted for 3-mercaptopropionic acid (3-MPA). A truncated teixobactin analog was prepared with the requisite thiol handle, thus enabling an array of vinyl esters to be conveniently conjugated onto the simplified teixobactin pharmacophore to yield S-lipidated cyclic lipopeptides.

[1]  Sung‐Hyun Yang,et al.  Replacement of the Acrid tert -Butylthiol and an Improved Isolation Protocol for Cysteine Lipidation on a Peptide or Amino Acid (CLipPA) , 2020 .

[2]  M. Brimble,et al.  Direct synthesis of cyclic lipopeptides using intramolecular native chemical ligation and thiol-ene CLipPA chemistry. , 2020, Organic & biomolecular chemistry.

[3]  M. Brimble,et al.  Synthesis of Antimicrobial Lipopeptides Using the "CLipPA" Thiol-Ene Reaction. , 2020, Methods in molecular biology.

[4]  Xuechen Li,et al.  Establishing the structure-activity relationship of teixobactin , 2019, Chinese Chemical Letters.

[5]  D. S. Reddy,et al.  Total synthesis of Met10-teixobactin , 2019, Tetrahedron Letters.

[6]  Xiuyun Sun,et al.  Developing Equipotent Teixobactin Analogues against Drug-Resistant Bacteria and Discovering a Hydrophobic Interaction between Lipid II and Teixobactin. , 2018, Journal of Medicinal Chemistry.

[7]  M. Oggioni,et al.  Lipopeptidomimetics derived from teixobactin have potent antibacterial activity against Staphylococcus aureus. , 2018, Chemical communications.

[8]  Xuechen Li,et al.  Synthesis and antibacterial studies of teixobactin analogues with non-isostere substitution of enduracididine. , 2018, Bioorganic & medicinal chemistry.

[9]  R. Beuerman,et al.  Design and Syntheses of Highly Potent Teixobactin Analogues against Staphylococcus aureus, Methicillin-Resistant Staphylococcus aureus (MRSA), and Vancomycin-Resistant Enterococci (VRE) in Vitro and in Vivo. , 2018, Journal of medicinal chemistry.

[10]  Yahya E. Jad,et al.  Teixobactin as a scaffold for unlimited new antimicrobial peptides: SAR study. , 2017, Bioorganic & medicinal chemistry.

[11]  M. Brimble,et al.  Synthesis and biological evaluation of novel teixobactin analogues. , 2017, Organic & biomolecular chemistry.

[12]  J. Nowick,et al.  Alanine scan reveals modifiable residues in teixobactin. , 2017, Chemical communications.

[13]  E. Breukink,et al.  Teixobactin analogues reveal enduracididine to be non-essential for highly potent antibacterial activity and lipid II binding† †Electronic supplementary information (ESI) available: Peptide synthesis, HPLC, LC-MS analysis, NMR spectra, microbiological data (MIC, MBC, time kill kinetics), lipid II an , 2017, Chemical science.

[14]  Xuechen Li,et al.  Synthesis and structure-activity relationship of teixobactin analogues via convergent Ser ligation. , 2017, Bioorganic & medicinal chemistry.

[15]  F. Albericio,et al.  Converting Teixobactin into a Cationic Antimicrobial Peptide (AMP). , 2017, Journal of medicinal chemistry.

[16]  A. Madder,et al.  Syntheses of potent teixobactin analogues against methicillin-resistant Staphylococcus aureus (MRSA) through the replacement of l-allo-enduracididine with its isosteres. , 2017, Chemical communications.

[17]  J. Ziller,et al.  X-ray crystallographic structure of a teixobactin analogue reveals key interactions of the teixobactin pharmacophore. , 2017, Chemical communications.

[18]  E. Breukink,et al.  Defining the molecular structure of teixobactin analogues and understanding their role in antibacterial activities. , 2017, Chemical communications.

[19]  Z. Pan,et al.  Synthesis and structure–activity relationship studies of teixobactin analogues , 2017 .

[20]  Yahya E. Jad,et al.  Lysine Scanning of Arg10–Teixobactin: Deciphering the Role of Hydrophobic and Hydrophilic Residues , 2016, ACS omega.

[21]  M. Brimble,et al.  Enduracididine, a rare amino acid component of peptide antibiotics: Natural products and synthesis , 2016, Beilstein journal of organic chemistry.

[22]  Ebrahim H Ghazvini Zadeh,et al.  Total synthesis of teixobactin , 2016, Nature Communications.

[23]  M. Moloney Natural Products as a Source for Novel Antibiotics. , 2016, Trends in pharmacological sciences.

[24]  Kevin H. Chen,et al.  Elucidation of the Teixobactin Pharmacophore. , 2016, ACS chemical biology.

[25]  Roger G. Linington,et al.  Total Synthesis of Teixobactin. , 2016, Organic letters.

[26]  Sung‐Hyun Yang,et al.  Lipidation of Cysteine or Cysteine-Containing Peptides Using the Thiol-Ene Reaction (CLipPA) , 2016 .

[27]  A. Madder,et al.  Efficient total syntheses and biological activities of two teixobactin analogues. , 2016, Chemical communications.

[28]  Yahya E. Jad,et al.  Synthesis and Biological Evaluation of a Teixobactin Analogue. , 2015, Organic letters.

[29]  K. Lewis,et al.  A new antibiotic kills pathogens without detectable resistance , 2015, Nature.

[30]  M. Brimble,et al.  Direct peptide lipidation through thiol-ene coupling enables rapid synthesis and evaluation of self-adjuvanting vaccine candidates. , 2013, Angewandte Chemie.

[31]  Miriam Góngora-Benítez,et al.  Handles for Fmoc solid-phase synthesis of protected peptides. , 2013, ACS combinatorial science.

[32]  J. McMurray,et al.  The synthesis of cyclic peptides using fmoc solid-phase chemistry and the linkage agent 4-(4-Hydroxymethyl-3-methoxyphenoxy)-butyric acid , 1993 .

[33]  R. B. Merrifield,et al.  Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. , 1981, Analytical biochemistry.