Truncated hierarchical Catmull–Clark subdivision with local refinement

In this paper we present a new method termed Truncated Hierarchical Catmull–Clark Subdivision (THCCS), which generalizes truncated hierarchical B-splines to control grids of arbitrary topology. THCCS basis functions satisfy partition of unity, are linearly independent, and are locally refinable. THCCS also preserves geometry during adaptive hh-refinement and thus inherits the surface continuity of Catmull–Clark subdivision, namely C2C2-continuous everywhere except at the local region surrounding extraordinary nodes, where the surface continuity is C1C1. Adaptive isogeometric analysis is performed with THCCS basis functions on a benchmark problem with extraordinary nodes. Local refinement on complex surfaces is also studied to show potential wide application of the proposed method.

[1]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[2]  M. Sabin,et al.  NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes , 2009, SIGGRAPH 2009.

[3]  Guoliang Xu,et al.  A unified method for hybrid subdivision surface design using geometric partial differential equations , 2014, Comput. Aided Des..

[4]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[5]  Ulrich Reif,et al.  Curvature integrability of subdivision surfaces , 2001, Adv. Comput. Math..

[6]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[7]  F. Cirak,et al.  A subdivision-based implementation of the hierarchical b-spline finite element method , 2013 .

[8]  T. Hughes,et al.  Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline , 2012 .

[9]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[10]  Bernd Hamann,et al.  Iso‐geometric Finite Element Analysis Based on Catmull‐Clark : ubdivision Solids , 2010, Comput. Graph. Forum.

[11]  Michael A. Scott,et al.  Isogeometric spline forests , 2014 .

[12]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[13]  Michael A. Scott,et al.  T-splines as a design-through-analysis technology , 2011 .

[14]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[15]  Jörg Peters,et al.  A Comparative Study of Several Classical, Discrete Differential and Isogeometric Methods for Solving Poisson's Equation on the Disk , 2014, Axioms.

[16]  Bert Jüttler,et al.  On the linear independence of (truncated) hierarchical subdivision splines , 2015 .

[17]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[18]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[19]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[20]  Malcolm Sabin,et al.  Recent Progress in Subdivision: a Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[21]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[22]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[23]  Thomas J. R. Hughes,et al.  Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology , 2012, Comput. Aided Des..

[24]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[25]  H. Ehlers LECTURERS , 1948, Statistics for Astrophysics.

[26]  G. Sangalli,et al.  Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .

[27]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[28]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[29]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[30]  Thomas J. R. Hughes,et al.  Volumetric T-spline construction using Boolean operations , 2014, Engineering with Computers.

[31]  Trond Kvamsdal,et al.  Isogeometric analysis using LR B-splines , 2014 .

[32]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[33]  Jörg Peters,et al.  On the Local Linear Independence of Generalized Subdivision Functions , 2006, SIAM J. Numer. Anal..

[34]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[35]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[36]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[37]  Eitan Grinspun,et al.  CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..

[38]  Hendrik Speleers,et al.  Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..

[39]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..