Truncated hierarchical Catmull–Clark subdivision with local refinement
暂无分享,去创建一个
Thomas J. R. Hughes | Yongjie Zhang | Xiaodong Wei | Michael A. Scott | T. Hughes | Y. Zhang | M. Scott | Xiaodong Wei
[1] John A. Evans,et al. Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .
[2] M. Sabin,et al. NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes , 2009, SIGGRAPH 2009.
[3] Guoliang Xu,et al. A unified method for hybrid subdivision surface design using geometric partial differential equations , 2014, Comput. Aided Des..
[4] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[5] Ulrich Reif,et al. Curvature integrability of subdivision surfaces , 2001, Adv. Comput. Math..
[6] Ulrich Reif,et al. A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..
[7] F. Cirak,et al. A subdivision-based implementation of the hierarchical b-spline finite element method , 2013 .
[8] T. Hughes,et al. Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline , 2012 .
[9] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[10] Bernd Hamann,et al. Iso‐geometric Finite Element Analysis Based on Catmull‐Clark : ubdivision Solids , 2010, Comput. Graph. Forum.
[11] Michael A. Scott,et al. Isogeometric spline forests , 2014 .
[12] David A. Forsyth,et al. Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..
[13] Michael A. Scott,et al. T-splines as a design-through-analysis technology , 2011 .
[14] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..
[15] Jörg Peters,et al. A Comparative Study of Several Classical, Discrete Differential and Isogeometric Methods for Solving Poisson's Equation on the Disk , 2014, Axioms.
[16] Bert Jüttler,et al. On the linear independence of (truncated) hierarchical subdivision splines , 2015 .
[17] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .
[18] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[19] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[20] Malcolm Sabin,et al. Recent Progress in Subdivision: a Survey , 2005, Advances in Multiresolution for Geometric Modelling.
[21] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[22] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[23] Thomas J. R. Hughes,et al. Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology , 2012, Comput. Aided Des..
[24] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[25] H. Ehlers. LECTURERS , 1948, Statistics for Astrophysics.
[26] G. Sangalli,et al. Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .
[27] Peter Schröder,et al. Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..
[28] Thomas J. R. Hughes,et al. Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.
[29] M. Ortiz,et al. Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .
[30] Thomas J. R. Hughes,et al. Volumetric T-spline construction using Boolean operations , 2014, Engineering with Computers.
[31] Trond Kvamsdal,et al. Isogeometric analysis using LR B-splines , 2014 .
[32] Nicholas S. North,et al. T-spline simplification and local refinement , 2004, SIGGRAPH 2004.
[33] Jörg Peters,et al. On the Local Linear Independence of Generalized Subdivision Functions , 2006, SIAM J. Numer. Anal..
[34] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[35] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[36] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[37] Eitan Grinspun,et al. CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..
[38] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[39] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..