The GW-Method for Quantum Chemistry Applications: Theory and Implementation.

The GW-technology corrects the Kohn-Sham (KS) single particle energies and single particle states for artifacts of the exchange-correlation (XC) functional of the underlying density functional theory (DFT) calculation. We present the formalism and implementation of GW adapted for standard quantum chemistry packages. Our implementation is tested using a typical set of molecules. We find that already after the first iteration of the self-consistency cycle, G0W0, the deviations of quasi-particle energies from experimental ionization potentials and electron affinities can be reduced by an order of magnitude against those of KS-DFT using GGA or hybrid functionals. Also, we confirm that even on this level of approximation there is a considerably diminished dependency of the G0W0-results on the XC-functional of the underlying DFT.

[1]  Louie,et al.  Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. , 1986, Physical review. B, Condensed matter.

[2]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[3]  L. Cederbaum,et al.  Evidence for a partial breakdown of the molecular orbital picture in the ionization spectra of large saturated hydrocarbons , 1996 .

[4]  Excitonic effects and optical properties of passivated CdSe clusters. , 2006, Physical review letters.

[5]  Denis Andrienko,et al.  Excited States of Dicyanovinyl-Substituted Oligothiophenes from Many-Body Green's Functions Theory. , 2012, Journal of chemical theory and computation.

[6]  G. Kresse,et al.  Accurate quasiparticle spectra from self-consistent GW calculations with vertex corrections. , 2007, Physical review letters.

[7]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[8]  M. L. Tiago,et al.  Electronic and optical excitations in Agn clusters (n=1―8): Comparison of density-functional and many-body theories , 2009 .

[9]  S. Louie,et al.  Quasiparticle band gap of ZnO: high accuracy from the conventional G⁰W⁰ approach. , 2010, Physical review letters.

[10]  Godby,et al.  Accurate exchange-correlation potential for silicon and its discontinuity on addition of an electron. , 1986, Physical review letters.

[11]  Angel Rubio,et al.  Unified description of ground and excited states of finite systems: The self-consistent GW approach , 2012, 1202.3547.

[12]  L. Hedin,et al.  A New Approach to the Theory of Photoemission from Solids , 1985 .

[13]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[14]  D. Pines A Collective Description of Electron Interactions: II. Collective vs Individual Particle Aspects of the Interactions , 1952 .

[15]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[16]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[17]  J. Perdew,et al.  Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy , 1982 .

[18]  D. Pines A Collective Description of-Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas , 1953 .

[19]  Takao Kotani,et al.  Quasiparticle self-consistent GW theory. , 2006, Physical review letters.

[20]  David A. Strubbe,et al.  BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures , 2011, Comput. Phys. Commun..

[21]  R. Ahlrichs,et al.  Erratum: “Time-dependent density functional methods for excited state properties” [J. Chem. Phys. 117, 7433 (2002)] , 2004 .

[22]  Lu J. Sham,et al.  Density-functional theory of the band gap , 1985 .

[23]  M. L. Cohen,et al.  High accuracy many-body calculational approaches for excitations in molecules. , 2000, Physical review letters.

[24]  M. Deleuze,et al.  Investigation of the valence electronic structure of n-butane using (e, 2e) spectroscopy , 1998 .

[25]  E. Baerends,et al.  The analog of Koopmans' theorem for virtual Kohn-Sham orbital energies , 2009 .

[26]  Louie,et al.  First-principles theory of quasiparticles: Calculation of band gaps in semiconductors and insulators. , 1985, Physical review letters.

[27]  F. Aryasetiawan,et al.  The GW method , 1997, cond-mat/9712013.

[28]  K. Jacobsen,et al.  Fully self-consistent GW calculations for molecules , 2010, 1001.1274.

[29]  E. Baerends,et al.  The analog of Koopmans' theorem in spin-density functional theory , 2002 .

[30]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[31]  W. Hübner,et al.  Life-time of quasiparticle states in metallic clusters from GW theory , 2004 .

[32]  Baroni,et al.  Quasiparticle band structure of lithium hydride. , 1985, Physical review. B, Condensed matter.

[33]  J. Neaton,et al.  Quantitative molecular orbital energies within a G0W0 approximation , 2012, 1204.0509.

[34]  Angel Rubio,et al.  Conserving GW scheme for nonequilibrium quantum transport in molecular contacts , 2007, 0710.0482.

[35]  M. L. Tiago,et al.  Optical excitations in organic molecules, clusters, and defects studied by first-principles Green's function methods , 2006, cond-mat/0605248.

[36]  Fry,et al.  Quasiparticle spectra of trans-polyacetylene. , 1996, Physical review. B, Condensed matter.

[37]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[38]  T. Koopmans,et al.  Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .

[39]  G. Kresse,et al.  Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors , 2010 .

[40]  Stefano Baroni,et al.  Optimal representation of the polarization propagator for large-scale GW calculations , 2009 .

[41]  Christoph Friedrich,et al.  Efficient implementation of the GW approximation within the all-electron FLAPW method , 2010, 1003.0316.

[42]  Godby,et al.  Quasiparticle energies in GaAs and AlAs. , 1987, Physical review. B, Condensed matter.

[43]  L. Cederbaum,et al.  On the breakdown of the Koopmans' theorem for nitrogen , 1973 .

[44]  M. Scheffler,et al.  Influence of the core-valence interaction and of the pseudopotential approximation on the electron self-energy in semiconductors. , 2008, Physical review letters.

[45]  Delano P. Chong,et al.  Interpretation of the Kohn-Sham orbital energies as approximate vertical ionization potentials , 2002 .

[46]  Electronic structure of Pu and Am metals by self-consistent relativistic GWmethod , 2011, 1112.0214.

[47]  F. Bechstedt,et al.  Optical spectra of Si nanocrystallites: Bethe-Salpeter approach versus time-dependent density-functional theory , 2008 .

[48]  J. C. Slater A Simplification of the Hartree-Fock Method , 1951 .

[49]  Andrea Marini,et al.  yambo: An ab initio tool for excited state calculations , 2008, Comput. Phys. Commun..

[50]  F. Bruneval GW approximation of the many-body problem and changes in the particle number. , 2009, Physical review letters.

[51]  R. Leeuwen,et al.  Exchange-correlation potential with correct asymptotic behavior. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[52]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[53]  John P. Perdew,et al.  Comment on ``Significance of the highest occupied Kohn-Sham eigenvalue'' , 1997 .

[54]  D. Sánchez-Portal,et al.  An O(N3) implementation of Hedin's GW approximation for molecules. , 2011, The Journal of chemical physics.

[55]  G. Rignanese,et al.  Band structure of gold from many-body perturbation theory , 2012, 1203.4508.

[56]  G. Brocks,et al.  Parameter-free quasiparticle calculations for YH3. , 2000, Physical review letters.

[57]  Robert van Leeuwen,et al.  Levels of self-consistency in the GW approximation. , 2009, The Journal of chemical physics.

[58]  John P. Perdew,et al.  Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities , 1983 .

[59]  Matthias Scheffler,et al.  Combining GW calculations with exact-exchange density-functional theory: an analysis of valence-band photoemission for compound semiconductors , 2005, cond-mat/0502404.

[60]  Claudio Attaccalite,et al.  First-principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications , 2010, 1011.3933.

[61]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[62]  C. Friedrich,et al.  First-Principles Calculation of Electronic Excitations in Solids with SPEX , 2010, 1110.1596.

[63]  San-Huang Ke,et al.  All-electron GW methods implemented in molecular orbital space: Ionization energy and electron affinity of conjugated molecules , 2010, 1012.1084.

[64]  P. Dirac Quantum Mechanics of Many-Electron Systems , 1929 .

[65]  Walter Kohn,et al.  Nobel Lecture: Electronic structure of matter-wave functions and density functionals , 1999 .

[66]  Y. Kawazoe,et al.  All-Electron GW Calculation for Quasiparticle Energies in C60 , 2006 .

[67]  K. Ohno,et al.  Quasiparticle energy spectra of alkali-metal clusters: all-electron first-principles calculations. , 2008, The Journal of chemical physics.

[68]  H. Lehmann Über Eigenschaften von Ausbreitungsfunktionen und Renormierungskonstanten quantisierter Felder , 1954 .

[69]  G. Kresse,et al.  Implementation and performance of the frequency-dependent GW method within the PAW framework , 2006 .

[70]  James R. Chelikowsky,et al.  First-principles GW-BSE excitations in organic molecules , 2005 .

[71]  F. Weigend Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.

[72]  Emily A Carter,et al.  Advances in correlated electronic structure methods for solids, surfaces, and nanostructures. , 2008, Annual review of physical chemistry.

[73]  A. Tkatchenko,et al.  Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions , 2012, 1201.0655.

[74]  M. Shishkin,et al.  Quasiparticle band structure based on a generalized Kohn-Sham scheme , 2007 .

[75]  Fabien Bruneval,et al.  Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies. , 2012, The Journal of chemical physics.

[76]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[77]  Ab initio calculations of electronic excitations: Collapsing spectral sums , 2010 .

[78]  K. Thygesen,et al.  Renormalization of molecular quasiparticle levels at metal-molecule interfaces: trends across binding regimes. , 2008, Physical review letters.

[79]  M. L. Tiago,et al.  Ab initio methods for the optical properties of CdSe clusters , 2008 .

[80]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .