Surface Map Homology Inference

A homeomorphism between two surfaces not only defines a (continuous and bijective) geometric correspondence of points but also (by implication) an identification of topological features, i.e. handles and tunnels, and how the map twists around them. However, in practice, surface maps are often encoded via sparse correspondences or fuzzy representations that merely approximate a homeomorphism and are therefore inherently ambiguous about map topology. In this work, we show a way to infer topological information from an imperfect input map between two shapes. In particular, we compute a homology map, a linear map that transports homology classes of cycles from one surface to the other, subject to a global consistency constraint. Our inference robustly handles imperfect (e.g., partial, sparse, fuzzy, noisy, outlier‐ridden, non‐injective) input maps and is guaranteed to produce homology maps that are compatible with true homeomorphisms between the input shapes. Homology maps inferred by our method can be directly used to transfer homological information between shapes, or serve as foundation for the construction of a proper homeomorphism guided by the input map, e.g., via compatible surface decomposition.

[1]  Hong Qin,et al.  Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology , 2008, IEEE Transactions on Visualization and Computer Graphics.

[2]  Meenakshisundaram Gopi,et al.  Geometry Aware Tori Decomposition , 2019, Comput. Graph. Forum.

[3]  Tamal K. Dey,et al.  An efficient computation of handle and tunnel loops via Reeb graphs , 2013, ACM Trans. Graph..

[4]  Benson Farb,et al.  A primer on mapping class groups , 2013 .

[5]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[6]  Patrick Schmidt,et al.  Inter-surface maps via constant-curvature metrics , 2020, ACM Trans. Graph..

[7]  Michael Möller,et al.  Regularized Pointwise Map Recovery from Functional Correspondence , 2017, Comput. Graph. Forum.

[8]  Yaron Lipman,et al.  Hyperbolic orbifold tutte embeddings , 2016, ACM Trans. Graph..

[9]  Hong Qin,et al.  Surface matching using consistent pants decomposition , 2008, SPM '08.

[10]  Maks Ovsjanikov,et al.  Topological Function Optimization for Continuous Shape Matching , 2018, Comput. Graph. Forum.

[11]  Pierre Alliez,et al.  Variance-minimizing transport plans for inter-surface mapping , 2017, ACM Trans. Graph..

[12]  Generating the Torelli group , 2011, 1110.0876.

[13]  Roi Poranne,et al.  Seamless surface mappings , 2015, ACM Trans. Graph..

[14]  Erin W. Chambers,et al.  Computing Minimum Area Homologies , 2015, Comput. Graph. Forum.

[15]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[16]  Alexander M. Bronstein,et al.  Regularized Partial Matching of Rigid Shapes , 2008, ECCV.

[17]  Leonidas J. Guibas,et al.  Soft Maps Between Surfaces , 2012, Comput. Graph. Forum.

[18]  Hong Qin,et al.  Topology-driven surface mappings with robust feature alignment , 2005, VIS 05. IEEE Visualization, 2005..

[19]  Revaz Valerianovich Gamkrelidze,et al.  Topology and Geometry , 1970 .

[20]  William H. Meeks,et al.  Representing homology classes by embedded circles on a compact surface , 1978 .

[21]  M. Ben-Chen,et al.  ENIGMA , 2020 .

[22]  Mirela Ben-Chen,et al.  Deblurring and Denoising of Maps between Shapes , 2017, Comput. Graph. Forum.

[23]  John M. Schreiner,et al.  Inter-surface mapping , 2004, SIGGRAPH 2004.

[24]  Yuan Liu,et al.  Error-bounded compatible remeshing , 2020, ACM Trans. Graph..

[25]  Christophe Geuzaine,et al.  Homology and Cohomology Computation in Finite Element Modeling , 2013, SIAM J. Sci. Comput..

[26]  D. Cremers,et al.  Simulated Annealing for 3D Shape Correspondence , 2020, 2020 International Conference on 3D Vision (3DV).

[27]  Jeff Erickson,et al.  Greedy optimal homotopy and homology generators , 2005, SODA '05.

[28]  Olga Sorkine-Hornung,et al.  Weighted averages on surfaces , 2013, ACM Trans. Graph..

[29]  Vladislav Kraevoy,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, SIGGRAPH 2004.

[30]  Daniel Cremers,et al.  Efficient Deformable Shape Correspondence via Kernel Matching , 2017, 2017 International Conference on 3D Vision (3DV).

[31]  Mirela Ben-Chen,et al.  Reversible Harmonic Maps between Discrete Surfaces , 2018, ACM Trans. Graph..

[32]  Marcel Campen,et al.  Distortion-minimizing injective maps between surfaces , 2019, ACM Trans. Graph..

[33]  L. Kobbelt,et al.  Layout Embedding via Combinatorial Optimization , 2021, Comput. Graph. Forum.

[34]  Martin Rumpf,et al.  Elastic Correspondence between Triangle Meshes , 2019, Comput. Graph. Forum.