Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links.

Monolithically integrated III-V semiconductors on a silicon-on-insulator (SOI) platform can be used as a building block for energy-efficient on-chip optical links. Epitaxial growth of III-V semiconductors on silicon, however, has been challenged by the large mismatches in lattice constants and thermal expansion coefficients between epitaxial layers and silicon substrates. Here, we demonstrate for the first time the monolithic integration of InGaAs nanowires on the SOI platform and its feasibility for photonics and optoelectronic applications. InGaAs nanowires are grown not only on a planar SOI layer but also on a 3D structured SOI layer by catalyst-free metal-organic chemical vapor deposition. The precise positioning of nanowires on 3D structures, including waveguides and gratings, reveals the versatility and practicality of the proposed platform. Photoluminescence measurements exhibit that the composition of ternary InGaAs nanowires grown on the SOI layer has wide tunability covering all telecommunication wavelengths from 1.2 to 1.8 μm. We also show that the emission from an optically pumped single nanowire is effectively coupled and transmitted through an SOI waveguide, explicitly showing that this work lays the foundation for a new platform toward energy-efficient optical links.

[1]  Kenji Hiruma,et al.  Growth and Characterization of InGaAs Nanowires Formed on GaAs(111)B by Selective-Area Metal Organic Vapor Phase Epitaxy , 2010 .

[2]  Xuliang Han,et al.  An 8-Gb/s optical backplane bus based on microchannel interconnects: design, fabrication, and performance measurements , 2000, Journal of Lightwave Technology.

[3]  G. Masini,et al.  Improving CMOS-compatible Germanium photodetectors. , 2012, Optics express.

[4]  Qiang Huang,et al.  Growth Process Modeling of III–V Nanowire Synthesis via Selective Area Metal–Organic Chemical Vapor Deposition , 2014, IEEE Transactions on Nanotechnology.

[5]  M. Ramsteiner,et al.  Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates. , 2014, Nano letters.

[6]  Hyun‐Seok Kim,et al.  Improving the composition uniformity of Au-catalyzed InGaAs nanowires on silicon , 2013 .

[7]  P. Lugli,et al.  Role of microstructure on optical properties in high-uniformity In 1-x Ga x As nanowire arrays: Evidence of a wider wurtzite band gap , 2013 .

[8]  Alan C. Farrell,et al.  Nanopillar array band-edge laser cavities on silicon-on-insulator for monolithic integrated light sources , 2016 .

[9]  C. Chang-Hasnain,et al.  Core-shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission. , 2009, Optics express.

[10]  Diana L. Huffaker,et al.  InGaAs heterostructure formation in catalyst-free GaAs nanopillars by selective-area metal-organic vapor phase epitaxy , 2010 .

[11]  S. Hiramatsu,et al.  Optical design of active interposer for high-speed chip level optical interconnects , 2006, Journal of Lightwave Technology.

[12]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[13]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[14]  M. Lipson,et al.  Ultra-low capacitance and high speed germanium photodetectors on silicon. , 2009, Optics express.

[15]  Bin Tian,et al.  Room-temperature InP distributed feedback laser array directly grown on silicon , 2015 .

[16]  David V. Plant,et al.  256-channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS , 2001 .

[17]  Gerhard Abstreiter,et al.  Growth and properties of InGaAs nanowires on silicon , 2014 .

[18]  H. Riel,et al.  InAs nanowire growth on oxide-masked 〈111〉 silicon , 2012 .

[19]  Zhiping Zhou,et al.  On-chip light sources for silicon photonics , 2015, Light: Science & Applications.

[20]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[21]  F.J. Leonberger,et al.  Optical interconnections for VLSI systems , 1984, Proceedings of the IEEE.

[22]  John A Rogers,et al.  In(x)Ga(₁-x)As nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics. , 2011, Nano letters.

[23]  M. Lipson,et al.  Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors. , 2009, Optics express.

[24]  Baolai Liang,et al.  Bottom-up photonic crystal lasers. , 2011, Nano letters.

[25]  C. Chang-Hasnain,et al.  Nanopillar lasers directly grown on silicon with heterostructure surface passivation. , 2014, ACS nano.

[26]  Lars Samuelson,et al.  Epitaxial III-V nanowires on silicon , 2004 .

[27]  Bas Ketelaars,et al.  Synergetic nanowire growth. , 2007, Nature nanotechnology.

[28]  Kenji Hiruma,et al.  Growth characteristics of GaAs nanowires obtained by selective area metal–organic vapour-phase epitaxy , 2008, Nanotechnology.

[29]  L. Sekaric,et al.  Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. , 2007, Optics express.

[30]  A. Koukitu,et al.  Solid composition of alloy semiconductors grown by MOVPE, MBE, VPE hand ALE , 1989 .

[31]  T. Sakamoto,et al.  Optical interconnection using VCSELs and polymeric waveguide circuits , 2000, Journal of Lightwave Technology.

[32]  Bahram Jalali,et al.  Demonstration of a silicon Raman laser. , 2004, Optics express.

[33]  M. Amann,et al.  High compositional homogeneity in In-rich InGaAs nanowire arrays on nanoimprinted SiO2/Si (111) , 2012 .

[34]  Neil Savage,et al.  Linking with light [high-speed optical interconnects] , 2002 .

[35]  D. Pavlidis,et al.  Improved quality GaN by growth on compliant silicon-on-insulator substrates using metalorganic chemical vapor deposition , 1998 .

[36]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[37]  Ming C. Wu,et al.  Efficient waveguide-coupling of metal-clad nanolaser cavities. , 2011, Optics express.

[38]  Connie Chang-Hasnain,et al.  Nanophotonic integrated circuits from nanoresonators grown on silicon , 2014, Nature Communications.

[39]  Jurgen Michel,et al.  High performance, waveguide integrated Ge photodetectors. , 2007, Optics express.

[40]  M. Romagnoli,et al.  An electrically pumped germanium laser. , 2012, Optics express.

[41]  T. Fukui,et al.  A III–V nanowire channel on silicon for high-performance vertical transistors , 2012, Nature.

[42]  Jordi Arbiol,et al.  In(Ga)As quantum dot formation on group-III assisted catalyst-free InGaAs nanowires , 2011, Nanotechnology.

[43]  John Bowers,et al.  Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. , 2005, Optics express.

[44]  Jurgen Michel,et al.  Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration , 2012 .

[45]  F. Xia,et al.  High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks , 2008 .

[46]  Yasuhiko Arakawa,et al.  First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 °C , 2014, 2014 The European Conference on Optical Communication (ECOC).

[47]  Wook-Jae Lee,et al.  High-Quality InAsSb Nanowires Grown by Catalyst-Free Selective-Area Metal-Organic Chemical Vapor Deposition. , 2015, Nano letters.

[48]  Yasuhiko Arakawa,et al.  1.5-μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab , 2004 .

[49]  Jasprit Singh,et al.  Physics of Semiconductors and Their Heterostructures , 1992 .

[50]  Omri Raday,et al.  A hybrid AlGaInAs-silicon evanescent waveguide photodetector. , 2007, Optics express.

[51]  Tomoyuki Akiyama,et al.  Silicon Photonics Optical Transmitter Technology for Tb/s-class I/O Co-packaged with CPU , 2014 .

[52]  N. Savage,et al.  Linking with Light , 2002 .

[53]  Jordi Arbiol,et al.  Group-III assisted catalyst-free growth of InGaAs nanowires and the formation of quantum dots , 2010 .

[54]  Connie Chang-Hasnain,et al.  Nanolasers grown on silicon-based MOSFETs. , 2012, Optics express.

[55]  T. Kamijoh,et al.  Room-temperature CW operation of InGaAsP lasers on Si fabricated by wafer bonding , 1996, IEEE Photonics Technology Letters.